Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 11, issue 9
Atmos. Meas. Tech., 11, 5315–5334, 2018
https://doi.org/10.5194/amt-11-5315-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Fifth International Workshop on Ice Nucleation (FIN) (ACP/AMT...

Atmos. Meas. Tech., 11, 5315–5334, 2018
https://doi.org/10.5194/amt-11-5315-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 24 Sep 2018

Research article | 24 Sep 2018

Cleaning up our water: reducing interferences from nonhomogeneous freezing of “pure” water in droplet freezing assays of ice-nucleating particles

Michael Polen et al.

Viewed

Total article views: 2,868 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,124 703 41 2,868 75 46 50
  • HTML: 2,124
  • PDF: 703
  • XML: 41
  • Total: 2,868
  • Supplement: 75
  • BibTeX: 46
  • EndNote: 50
Views and downloads (calculated since 26 Apr 2018)
Cumulative views and downloads (calculated since 26 Apr 2018)

Viewed (geographical distribution)

Total article views: 2,592 (including HTML, PDF, and XML) Thereof 2,575 with geography defined and 17 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 19 Sep 2020
Publications Copernicus
Download
Short summary
Ice nucleation commonly studied using droplet freezing measurements suffers from artifacts caused by water impurities or substrate effects. We evaluate a series of substrates and water sources to find methods that reduce the background freezing temperature limit. The best performance was obtained from our new microfluidic device and hydrophobic glass surfaces, using filtered HPLC bottled water. We conclude with recommendations for best practices in droplet freezing experiments and data analysis.
Ice nucleation commonly studied using droplet freezing measurements suffers from artifacts...
Citation