Articles | Volume 11, issue 12
https://doi.org/10.5194/amt-11-6651-2018
https://doi.org/10.5194/amt-11-6651-2018
Research article
 | 
17 Dec 2018
Research article |  | 17 Dec 2018

Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project

K. Folkert Boersma, Henk J. Eskes, Andreas Richter, Isabelle De Smedt, Alba Lorente, Steffen Beirle, Jos H. G. M. van Geffen, Marina Zara, Enno Peters, Michel Van Roozendael, Thomas Wagner, Joannes D. Maasakkers, Ronald J. van der A, Joanne Nightingale, Anne De Rudder, Hitoshi Irie, Gaia Pinardi, Jean-Christopher Lambert, and Steven C. Compernolle

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Folkert Boersma on behalf of the Authors (12 Nov 2018)  Author's response   Manuscript 
ED: Publish as is (25 Nov 2018) by Lok Lamsal
AR by Folkert Boersma on behalf of the Authors (06 Dec 2018)  Manuscript 
Short summary
This paper describes a new, improved data record of 22+ years of coherent nitrogen dioxide (NO2) pollution measurements from different satellite instruments. Our work helps to ensure that climate data are of sufficient quality to draw reliable conclusions and shape decisions. It shows how dedicated intercomparisons of retrieval sub-steps have led to improved NO2 measurements from the GOME, SCIAMACHY, GOME-2(A), and OMI sensors, and how quality assurance of the new data product is achieved.