Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-1441-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-1441-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Understanding the ability of low-cost MOx sensors to quantify ambient VOCs
Ashley M. Collier-Oxandale
CORRESPONDING AUTHOR
Environmental Engineering, University of Colorado, Boulder, CO
80309, USA
Jacob Thorson
Mechanical Engineering, University of Colorado, Boulder, CO
80309, USA
Hannah Halliday
NASA Langley Research Center, Hampton, VA 23666, USA
Jana Milford
Mechanical Engineering, University of Colorado, Boulder, CO
80309, USA
Michael Hannigan
Mechanical Engineering, University of Colorado, Boulder, CO
80309, USA
Related authors
No articles found.
Daun Jeong, Rebecca S. Hornbrook, Alan J. Hills, Glenn Diskin, Hannah S. Halliday, Joshua P. DiGangi, Alan Fried, Dirk Richter, James Walega, Petter Weibring, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jeff Peischl, Armin Wisthaler, Tomas Mikoviny, John B. Nowak, Felix Piel, Laura Tomsche, Christopher D. Holmes, Amber Soja, Emily Gargulinski, James H. Crawford, Jack Dibb, Carsten Warneke, Joshua Schwarz, and Eric C. Apel
EGUsphere, https://doi.org/10.5194/egusphere-2025-4703, https://doi.org/10.5194/egusphere-2025-4703, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Formaldehyde is an important atmospheric species that is present at all times throughout the troposphere. Accurately measuring formaldehyde is necessary for understanding key atmospheric chemical cycles. We describe here the first wide-scale demonstration of the gas chromatographic mass spectrometric (GC/MS) technique (NSF NCAR TOGA-TOF) for quantifying formaldehyde in the atmosphere and we show this technique to be highly sensitive and selective.
Christopher D. Holmes, Joshua P. Schwarz, Charles H. Fite, Anxhelo Agastra, Holly K. Nowell, Katherine Ball, T. Paul Bui, Johnathan Dean-Day, Zachary C. J. Decker, Joshua P. DiGagni, Glenn S. Diskin, Emily M. Gargulinski, Hannah Halliday, Shobha Kondragunta, John B. Nowak, David A. Peterson, Michael A. Robinson, Amber J. Soja, Rebecca A. Washenfelder, Chuanyu Xu, and Robert J. Yokelson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-307, https://doi.org/10.5194/essd-2025-307, 2025
Revised manuscript has not been submitted
Short summary
Short summary
Smoke age is an important factor in the chemical and physical evolution of smoke. Two methods for determining the age of smoke are applied to the NASA-NOAA FIREX-AQ field campaign: one based on wind speed and distance, and another using an ensemble of modeled air parcel trajectories. Both methods are evaluated, with the trajectory method, which includes plume rise and uncertainty estimates, proving more accurate.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Laura Tomsche, Felix Piel, Tomas Mikoviny, Claus J. Nielsen, Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Melinda K. Schueneman, Jose L. Jimenez, Hannah Halliday, Glenn Diskin, Joshua P. DiGangi, John B. Nowak, Elizabeth B. Wiggins, Emily Gargulinski, Amber J. Soja, and Armin Wisthaler
Atmos. Chem. Phys., 23, 2331–2343, https://doi.org/10.5194/acp-23-2331-2023, https://doi.org/10.5194/acp-23-2331-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important trace gas in the atmosphere and fires are among the poorly investigated sources. During the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) aircraft campaign, we measured gaseous NH3 and particulate ammonium (NH4+) in smoke plumes emitted from 6 wildfires in the Western US and 66 small agricultural fires in the Southeastern US. We herein present a comprehensive set of emission factors of NH3 and NHx, where NHx = NH3 + NH4+.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Russell W. Long, Andrew Whitehill, Andrew Habel, Shawn Urbanski, Hannah Halliday, Maribel Colón, Surender Kaushik, and Matthew S. Landis
Atmos. Meas. Tech., 14, 1783–1800, https://doi.org/10.5194/amt-14-1783-2021, https://doi.org/10.5194/amt-14-1783-2021, 2021
Short summary
Short summary
This manuscript details field and laboratory-based evaluations of ozone monitoring methods in smoke. UV photometry, the most widely used measurement method for ozone in ambient air, was shown to suffer from a severe positive interference when operated in the presence of smoke, while chemiluminescence-based methods were shown to be free of interferences. The results detailed in this paper will provide monitoring agencies with the tools needed to address smoke-related ozone measurement challenges.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Cited articles
Adgate, J. L., Goldstein, B. D., and McKenzie, L. M.: Potential public health
hazards, exposures and health effects from unconventional natural gas
development. Environ. Sci. Technol., 48, 8307–8320, https://doi.org/10.1021/es404621d,
2014.
Beloff, B. R., Beaver, E. R., and Massin, H.: Assessing societal costs
associated with environmental impacts, Environmental Quality Management, 10,
67–82, https://doi.org/10.1002/1520-6483(200024)10:2<67::AID-TQEM8>3.0.CO;2-B, 2000.
Borbon, A., Gilman, J. B., Kuster, W. C., Grand, N., Chevaillier, S., Colomb,
A., Dolgorouky, C., Gros, V., Lopez, M., Sarda-Esteve, R., Holloway, J.,
Stutz, J., Petetin, H., McKeen, S., Beekmann, M., Warneke, C., Parrish, D.
D., and De Gouw, J. A.: Emission ratios of anthropogenic volatile organic
compounds in northern mid-latitude megacities: Observations versus emission
inventories in Los Angeles and Paris, J. Geophys. Res.-Atmos., 118,
2041–2057, https://doi.org/10.1002/jgrd.50059, 2013.
Casey, J. G. and Hannigan, M. P.: Testing the performance of field
calibration techniques for low-cost gas sensors in new deployment locations:
across a county line and across Colorado, Atmos. Meas. Tech., 11, 6351–6378,
https://doi.org/10.5194/amt-11-6351-2018, 2018.
Casey, J. G., Collier-Oxandale, A., and Hannigan, M.: Performance of
artificial neural networks and linear models to quantify 4 trace gas species
in an oil and gas production region with low-cost sensors, Sensor Actuat.
B-Chem., 283, 504–514, https://doi.org/10.1016/J.SNB.2018.12.049, 2019.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B.,
Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms
contribute to air quality monitoring and exposure estimates?, Environ. Int.,
99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Cheadle, L., Deanes, L., Sadighi, K., Casey, J. G., Collier-Oxandale, A., and
Hannigan, M.: Quantifying neighborhood-Scale spatial variations of ozone at
open space and urban sites in Boulder, Colorado using low-cost sensor
technology, Sensors, 17, E2072, https://doi.org/10.3390/s17092072, 2017.
Chen, S., Liao, W., Chang, C., Su, Y., Tong, Y., Chang, J. S., and Wang, J.:
Network monitoring of speciated vs. total non-methane hydrocarbon
measurements, Atmos. Environ., 90, 33–42,
https://doi.org/10.1016/j.atmosenv.2014.03.020, 2014.
Collier-Oxandale, A.: Low-Cost VOC MOx Sensor Data for Estimating Individual
and Groups of VOCs, Colorado, Summer 2014, Mendeley Data, v1,
https://doi.org/10.17632/hkn2tbcp67.1, 2019.
Collier-Oxandale, A., Coffey, E., Thorson, J., Johnston, J., and Hannigan,
M.: Comparing building and neighborhood-scale variability of CO2 and
O3 to inform deployment considerations for low-cost sensor system
use, Sensors, 18, 1349, https://doi.org/10.3390/s18051349, 2018a.
Collier-Oxandale, A., Casey, J. G., Piedrahita, R., Ortega, J., Halliday, H.,
Johnston, J., and Hannigan, M. P.: Assessing a low-cost methane sensor
quantification system for use in complex rural and urban environments, Atmos.
Meas. Tech., 11, 3569–3594, https://doi.org/10.5194/amt-11-3569-2018, 2018b.
COGCC: Online GIS Tool, Colorado Oil and Gas Conservation Commission,
available at: https://cogccmap.state.co.us/cogcc_gis_online/ (last
access: April 2018), 2017.
Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B.,
Kaminsky, M. L., Worsnop, D. R., and Jayne, J. T.: Use of electrochemical
sensors for measurement of air pollution: correcting interference response
and validating measurements, Atmos. Meas. Tech., 10, 3575–3588,
https://doi.org/10.5194/amt-10-3575-2017, 2017.
De Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in
the earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass
Spectrom. Rev., 26, 223–257, https://doi.org/10.1002/mas.20119, 2007.
De Vito, S., Massera, E., Piga, M., Martinotto, L., and Di Francia, G.: On
field calibration of an electronic nose for benzene estimation in an urban
pollution monitoring scenario, Sensor Actuat. B-Chem., 129, 750–757,
https://doi.org/10.1016/j.snb.2007.09.060, 2008.
Eugster, W. and Kling, G. W.: Performance of a low-cost methane sensor for
ambient concentration measurements in preliminary studies, Atmos. Meas.
Tech., 5, 1925–1934, https://doi.org/10.5194/amt-5-1925-2012, 2012.
Figaro: TGS 2600 – for the detection of air contaminants, On-line product
data sheet, available at:
http://www.figarosensor.com/products/2600pdf.pdf (last access: 4
October 2017), 2005a.
Figaro: TGS 2602 – for the detection of air contaminants, On-line product
data sheet, available at:
http://www.figarosensor.com/products/2602pdf.pdf (last access: April
2018), 2005b.
Halliday, H. S., Thompson, A. M., Wisthaler, A., Blake, D., Hornbrook, R. S.,
Mikoviny, T., Muller, M., Eicher, P., Apel, E. C., and Hills, A. J.:
Atmospheric benzene observations from oil and gas production in the Denver
Julesburg basin in July and August 2014, J. Geophys. Res.-Atmos., 121,
11055–11074, https://doi.org/10.1002/2016JD025327, 2016.
Halliday, H. S., DiGangi, J. P., Choi, Y., Diskin, G. S., Pusede, S. E.,
Rana, M., Nowak, J. B., Knote, C., Ren, X., He, H., Dickerson, R. R., and Li,
Z.: Using Short-Term CO∕CO2 Ratios to Assess Airmass Differences over
the Korean Peninsula during KORUS-AQ, J. Geophys. Res., in review, 2019.
Heimann, I., Bright, V. B., McLeod, M. W., Mead, M. I., Popoola, O. A. M.,
Stewart, G. B., and Jones, R. L.: Source attribution of air pollution by
spatial scale separation using high spatial density networks of low cost air
quality sensors, Atmos. Environ., 113, 10–19,
https://doi.org/10.1016/j.atmosenv.2015.04.057, 2015.
Helmig, D., Thompson, C. R., Evans, J., Boylan, P., and Hueber, J.: Highly
elevated atmospheric levels of volatile organic compounds in the Uintah
Basin, Utah, Enviorn. Sci. Technol., 48, 4707–4715, https://doi.org/10.1021/es405046r,
2014.
Jerrett, M., Donaire-gonzalez, D., Popoola, O., Jones, R., Cohen, R. C.,
Almanza, E., De Nazelle, A., Mead, I., Carrasco-Turigas, G., Cole-Hunter, T.,
Triguero-Mas, M., Seto, E., and Nieuwenhuijsen, M.: Validating novel air
pollution sensors to improve exposure estimates for epidemiological analyses
and citizen science, Environ. Res., 158, 286–294,
https://doi.org/10.1016/j.envres.2017.04.023, 2017.
Król, S., Zabiegała, B., and Namieśnik, J.: Monitoring VOCs in
atmospheric air I. On-line gas analyzers, TRAC-Trend Anal. Chem., 29,
1092–1100, https://doi.org/10.1016/j.trac.2010.05.007, 2010.
Kumar, A. and Víden, I.: Volatile organic compounds: Sampling methods
and their worldwide profile in ambient air, Environ. Monit. Assess., 131,
301–321, https://doi.org/10.1007/s10661-006-9477-1, 2007.
Kwon, J., Weisel, C. P., Turpin, B. J., Zhang, J., Korn, L. R., Morandi, M.
T., Stock, T. H., and Colome, S.: Source Proximity and Outdoor-Residential
VOC Concentrations: Results from the RIOPA Study, Environ. Sci. Technol., 40,
4074–4082, https://doi.org/10.1021/es051828u, 2006.
Leidinger, M., Sauerwald, T., Reimringer, W., Ventura, G., and Schütze,
A.: Selective detection of hazardous VOCs for indoor air quality applications
using a virtual gas sensor array, J. Sens. Sens. Syst., 3, 253–263,
https://doi.org/10.5194/jsss-3-253-2014, 2014.
Leidinger, M., Rieger, M., Sauerwald, T., Alépée, C., and
Schütze, A.: Integrated pre-concentrator gas sensor microsystem for ppb
level benzene detection, Sensor Actuat. B-Chem., 236, 988–996,
https://doi.org/10.1016/j.snb.2016.04.064, 2016.
Leidinger, M., Baur, T., Sauerwald, T., Schütze, A., Reimringer, W.,
Spinelle, L., and Gerboles, M.: Highly sensitive benzene detection with MOS
gas sensors, Proceedings Sensor 2017, 92–97, https://doi.org/10.5162/sensor2017/A4.3,
2017.
Lewis, A. C., Lee, J., Edwards, P. M., Shaw, M. D., Evans, M. J., Moller, S.
J., Smith, K., Ellis, M., Gillott, S., White, A., and Buckley, J. W.:
Evaluating the performance of low cost chemical sensors for air pollution
research, Faraday Discuss., 189, 85–103, https://doi.org/10.1039/C5FD00201J, 2016.
Loh, M. M., Levy, J. I., Spengler, J. D., Houseman, E. A., and Bennett, D.
H.: Ranking cancer risks of organic hazardous air pollutants in the United
States, Environ. Health Persp., 115, 1160–1168, https://doi.org/10.1289/ehp.9884, 2007.
Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara,
L. B., Presto, A. A., and R. Subramanian: Development of a general
calibration model and long-term performance evaluation of low-cost sensors
for air pollutant gas monitoring, Atmos. Meas. Tech., 12, 903–920,
https://doi.org/10.5194/amt-12-903-2019, 2019.
Masson, N., Piedrahita, R., and Hannigan, M.: Quantification method for
electrolytic sensors in long-term monitoring of ambient air quality, Sensors,
15, 27283–27302, 2015.
McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A.,
Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A.,
Cui, Y. Y., Kim, S. W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A.
H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and Trainer,
M.: Volatile chemical products emerging as largest petrochemical source of
urban organic emissions, Science, 359, 760–764,
https://doi.org/10.1126/science.aaq0524, 2018.
Miskell, G., Salmond, J., Grange, S., Weissert, L., and Henshaw, G.: Reliable
Long-Term Data from Low-Cost Gas Sensor Networks in the Environment,
Eurosensors 2017, 1, 400, https://doi.org/10.3390/proceedings1040400, 2017.
Mobile Sensing Technology: U-Pod open-source construction and parts
information, available at: http://mobilesensingtechnology.com/ (last
access: October 2017), 2018.
NASA: Discover-AQ Database, available at:
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1?GROUND-PLATTEVILLE=1
(last access: May 2018), 2015.
O'Shea, S. J., Bauguitte, S. J.-B., Gallagher, M. W., Lowry, D., and
Percival, C. J.: Development of a cavity-enhanced absorption spectrometer for
airborne measurements of CH4 and CO2, Atmos. Meas. Tech., 6,
1095–1109, https://doi.org/10.5194/amt-6-1095-2013, 2013.
Pétron, G., Karion, A., Sweeney, C., Miller, B. R., Montzka, S. A.,
Frost, G. J., Trainer, M., Tans, P., Andrews, A., Kofler, J., Helmig, D.,
Guenther, D., Dlugokencky, E., Lang, P., Newberger, T., Wolter, S., Hall, B.,
Novelli, P., Brewer, A., Conley, S., Hardesty, M., Banta, R., White, A.,
Noone, D., Wolfe, D., and Schnell, R.: A new look at methane and nonmethane
hydrocarbon emissions from oil and natural gas operations in the Colorado
Denver-Julesburg Basin, J. Geophys. Res.-Atmos., 119, 6836–6852,
https://doi.org/10.1002/2013JD021272, 2014.
Pfister G., Flocke, F., Hornbrook, R., Orlando, J., Lee, S., and Schroeder,
J.: Final Report: Process-Based and Regional Source Impact Analysis for
FRAPPÉ and DISCOVER-AQ 2014, National Center for Atmospheric Research,
report available at:
https://www.colorado.gov/airquality/tech_doc_repository.aspx?action=openandfile=FRAPPE-NCAR_Final_Report_July2017.pdf
(last access: May 2018), 2017.
Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang, Y.,
Li, K., Dick, R. P., Lv, Q., Hannigan, M., and Shang, L.: The next generation
of low-cost personal air quality sensors for quantitative exposure
monitoring, Atmos. Meas. Tech., 7, 3325–3336,
https://doi.org/10.5194/amt-7-3325-2014, 2014.
Rumchev, K., Brown, H., and Spickett, J.: Volatile Organic Compounds: Do the
present a risk to our health?, Rev. Environ. Health, 22, 39–55, 2007.
Sadighi, K., Coffey, E., Polidori, A., Feenstra, B., Lv, Q., Henze, D. K.,
and Hannigan, M.: Intra-urban spatial variability of surface ozone in
Riverside, CA: viability and validation of low-cost sensors, Atmos. Meas.
Tech., 11, 1777–1792, https://doi.org/10.5194/amt-11-1777-2018, 2018.
Sauerwald, T., Baur, T., Leidinger, M., Reimringer, W., Spinelle, L.,
Gerboles, M., Kok, G., and Schötze, A.: Highly sensitive benzene
detection with metal oxide semiconductor gas sensors – an inter-laboratory
comparison, J. Sens. Sens. Syst., 7, 235–243,
https://doi.org/10.5194/jsss-7-235-2018, 2018.
Schütze, A., Baur, T., Leidinger, M., Reimringer, W., Jung, R., Conrad,
T., and Sauerwald, T.: Highly sensitive and selective VOC sensor systems
based on semiconductor gas sensors: how to?, Environments, 4, 20,
https://doi.org/10.3390/environments4010020, 2017.
Shamasunder, B., Collier-Oxandale, A., Blickley, J., Sadd, J., Chan, M.,
Navarro, S., Hannigan, M., and Wong, N. J.: Community-based Health and
exposure study around urban oil developments in South Los Angeles, Int. J.
Environ. Res. Pub. He., 15, 138, https://doi.org/10.3390/ijerph15010138, 2018.
Shen, Z., Zhang, X., Ma, X., Mi, R., Chen, Y., and Ruan, S.: The significant
improvement for BTX (benzene, toluene and xylene) sensing performance based
on Au-decorated hierarchical ZnO porous rose-like architectures, Sensor
Actuat. B-Chem., 262, 86–94, https://doi.org/10.1016/j.snb.2018.01.205, 2018.
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola,
F.: Field calibration of a cluster of low-cost available sensors for air
quality monitoring – Part A: Ozone and nitrogen dioxide, Sensor Actuat.
B-Chem., 215, 249–257, https://doi.org/10.1016/j.snb.2015.03.031, 2015.
Spinelle, L., Gerboles, M., Kok, G., Persijn, S., and Sauerwald, T.:
Performance evaluation of low-cost BTEX sensors and devices within the
EURAMET Key-VOCs Project, Proceedings, 1, 425,
https://doi.org/10.3390/proceedings1040425, 2017a.
Spinelle, L., Gerboles, M., Kok, G., Persijn, S., and Sauerwald, T.: Review
of Portable and Low-Cost Sensors for the Volatile Organic Compounds, Sensors,
17, 1520, https://doi.org/10.3390/s17071520, 2017b.
Suh, H. H., Bahadori, T., Vallarino, J., and Spengler, J. D.: Criteria air
pollutants and toxic air pollutants, Environ. Health Persp., 108, 625–633,
2000.
Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong, L.-T., and
Liu, J.-H.: Metal oxide nanostructures and their gas sensing properties: a
review, Sensors, 12, 2610–2631, https://doi.org/10.3390/s120302610, 2012.
Szulczynski, B. and Gebicki, J.: Currently commercially available chemical
sensors employed for detection of volatile organic compounds in outdoor and
indoor air, Environments, 4, 21, https://doi.org/10.3390/environments4010021,
2017.
Thoma, E. D., Brantley, H. L., Oliver, K. D., Whitaker, D. A., Mukerjee, S.,
Mitchell, B., Wu, T., Squier, B., Escobar, E., Cousett, T. A., Gross-Davis,
C. A., Schmidt, H., Sosna, D., and Weiss, H.: South Philadelphia passive
sampler and sensor study, J. Air Waste Manage., 66, 959–970,
https://doi.org/10.1080/10962247.2016.1184724, 2016.
Thompson, A.: DISCOVER-AQ Dataset: Platteville, NATIVE Data, NASA DISCOVER-AQ
Database, available at:
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1#THOMPSON.ANNE/
(last access: April 2018), 2014.
Thompson, C. R., Hueber, J., and Helmig, D.: Influence of oil and gas
emissions on ambient atmospheric non-methane hydrocarbons in residential
areas of Northeastern Colorado, Elem. Sci. Anth., 2, 000035,
https://doi.org/10.12952/journal.elementa.000035, 2014.
Vikram, S., Collier-Oxandale, A., Ostertag, M., Menarini, M., Chermak, C.,
Dasgupta, S., Rosing, T., Hannigan, M., and Griswold, W. G.: Evaluating and
Improving the Reliability of Gas-Phase Sensor System Calibrations Across New
Locations for Ambient Measurements and Personal Exposure Monitoring, Atmos.
Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-30, in review, 2019.
Wang, C., Yin, L., Zhang, L., Xiang, D., and Gao, R.: Metal oxide gas
sensors: sensitivity and influencing factors, Sensors, 10, 2088–2106,
https://doi.org/10.3390/s100302088, 2010.
Warneke, C., Gouw, J. A. De, Edwards, P. M., Holloway, J. S., Gilman, J. B.,
Kuster, W. C., Graus, M., Atlas, E., Blake, D., Gentner, D. R., Goldstein, A.
H., Harley, R. A., Alvarez, S., Rappenglueck, B., Trainer, M., and Parrish,
D. D.: Photochemical aging of volatile organic compounds in the Los Angeles
basin: Weekday-weekend effect. J. Geophys. Res.-Atmos., 118, 5018–5028,
https://doi.org/10.1002/jgrd.50423, 2013.
Warneke, C., Geiger, F., Edwards, P. M., Dube, W., Pétron, G., Kofler,
J., Zahn, A., Brown, S. S., Graus, M., Gilman, J. B., Lerner, B. M., Peischl,
J., Ryerson, T. B., de Gouw, J. A., and Roberts, J. M.: Volatile organic
compound emissions from the oil and natural gas industry in the Uintah Basin,
Utah: oil and gas well pad emissions compared to ambient air composition,
Atmos. Chem. Phys., 14, 10977–10988,
https://doi.org/10.5194/acp-14-10977-2014, 2014.
Wisthaler, A.: DISCOVER-AQ Dataset: Platteville, PTRMS Data, NASA DISCOVER-AQ
Database, available at:
https://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.co-2014?GROUND-PLATTEVILLE=1#WISTHALER.ARMIN/
(last access: April 2018), 2015.
Williams, R. and Kaufman, A.: Next Generation Air Monitoring (NGAM) VOC
Sensor Evaluation Report. U.S. Environmental Protection Agency, Washington,
DC, EPA/600/R-15/122 (NTIS PB2015-105133), 2015.
Wolfrum, E. J., Meglen, R. M., Peterson, D., and Sluiter, J.: Metal oxide
sensor arrays for the detection, differentiation, and quantification of
volatile organic compounds at sub-parts-per-million concentration levels,
Sensor Actuat. B-Chem., 115, 322–329, https://doi.org/10.1016/j.snb.2005.09.026, 2006.
Woodruff, T. J., Axelrad, D. A., Caldwell, J., Morello-Frosch, R., and
Rosenbaum, A.: Public health implications of 1990 air toxics concentrations
across the United States, Environ. Health Persp., 106, 245–251, 1998.
Wu, X., Fan, Z., Zhu, X., Jung, K. H., Ohman-strickland, P., Weisel, C. P.,
and Lioy, P. J.: Exposures to volatile organic compounds (VOCs) and
associated health risks of socio-economically disadvantaged population in a
“hot spot” in Camden, New Jersey, Atmos. Environ., 57, 72–79,
https://doi.org/10.1016/j.atmosenv.2012.04.029, 2012.
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A.,
Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning
calibration model using random forests to improve sensor performance for
lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313,
https://doi.org/10.5194/amt-11-291-2018, 2018.
Short summary
Airborne pollutants, such as volatile organic compounds, can present a danger to public and environmental health. We explored the potential for low-cost air quality sensors to help measure these compounds. From our deployment and the subsequent analysis, it seems these sensors can be calibrated to provide estimates of the levels of some individual and some groups of VOCs. This is promising as more cost-effective ways to measure VOCs could inform actions to reduce exposure.
Airborne pollutants, such as volatile organic compounds, can present a danger to public and...