Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1871–1888, 2019
https://doi.org/10.5194/amt-12-1871-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 1871–1888, 2019
https://doi.org/10.5194/amt-12-1871-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 21 Mar 2019

Research article | 21 Mar 2019

Better turbulence spectra from velocity–azimuth display scanning wind lidar

Felix Kelberlau and Jakob Mann

Related authors

Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar
Felix Kelberlau and Jakob Mann
Wind Energ. Sci., 5, 519–541, https://doi.org/10.5194/wes-5-519-2020,https://doi.org/10.5194/wes-5-519-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improved SIFTER v2 algorithm for long-term GOME-2A satellite retrievals of fluorescence with a correction for instrument degradation
Erik van Schaik, Maurits L. Kooreman, Piet Stammes, L. Gijsbert Tilstra, Olaf N. E. Tuinder, Abram F. J. Sanders, Willem W. Verstraeten, Rüdiger Lang, Alessandra Cacciari, Joanna Joiner, Wouter Peters, and K. Folkert Boersma
Atmos. Meas. Tech., 13, 4295–4315, https://doi.org/10.5194/amt-13-4295-2020,https://doi.org/10.5194/amt-13-4295-2020, 2020
Short summary
Towards improved turbulence estimation with Doppler wind lidar velocity-azimuth display (VAD) scans
Norman Wildmann, Eileen Päschke, Anke Roiger, and Christian Mallaun
Atmos. Meas. Tech., 13, 4141–4158, https://doi.org/10.5194/amt-13-4141-2020,https://doi.org/10.5194/amt-13-4141-2020, 2020
Optimised degradation correction for SCIAMACHY satellite solar measurements from 330 to 1600 nm by using the internal white light source
Tina Hilbig, Klaus Bramstedt, Mark Weber, John P. Burrows, and Matthijs Krijger
Atmos. Meas. Tech., 13, 3893–3907, https://doi.org/10.5194/amt-13-3893-2020,https://doi.org/10.5194/amt-13-3893-2020, 2020
Short summary
Rain event detection in commercial microwave link attenuation data using convolutional neural networks
Julius Polz, Christian Chwala, Maximilian Graf, and Harald Kunstmann
Atmos. Meas. Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020,https://doi.org/10.5194/amt-13-3835-2020, 2020
Short summary
Preliminary investigation of the relationship between differential phase shift and path-integrated attenuation at the X band frequency in an Alpine environment
Guy Delrieu, Anil Kumar Khanal, Nan Yu, Frédéric Cazenave, Brice Boudevillain, and Nicolas Gaussiat
Atmos. Meas. Tech., 13, 3731–3749, https://doi.org/10.5194/amt-13-3731-2020,https://doi.org/10.5194/amt-13-3731-2020, 2020

Cited articles

Bardal, L. M. and Sætran, L. R.: Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines, J. Phys. Conf. Ser., 753, 32–33, https://doi.org/10.1088/1742-6596/753/3/032033, 2016. a
Branlard, E., Pedersen, A. T., Mann, J., Angelou, N., Fischer, A., Mikkelsen, T., Harris, M., Slinger, C., and Montes, B. F.: Retrieving wind statistics from average spectrum of continuous-wave lidar, Atmos. Meas. Tech., 6, 1673–1683, https://doi.org/10.5194/amt-6-1673-2013, 2013. a
Browning, K. A. and Wexler, R.: The Determination of Kinematic Properties of a Wind Field Using Doppler Radar, J. Appl. Meteorol.Clim., 7, 105–113, https://doi.org/10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2, 1968. a
Canadillas, B., Bégué, A., and Neumann, T.: Comparison of turbulence spectra derived from LiDAR and sonic measurements at the offshore platform FINO1, 10th German Wind Energy Conference (DEWEK 2010), 17–18 November 2010, Bremen, Germany, 2010. a
Chougule, A., Mann, J., Kelly, M., and Larsen, G.: Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy, J. Atmos. Sci., 74, 949–974, https://doi.org/10.1175/JAS-D-16-0215.1, 2017. a
Publications Copernicus
Download
Short summary
Lidars are devices that can measure wind velocities remotely from the ground. Their estimates are very accurate in the mean but wind speed fluctuations lead to measurement errors. The presented data processing methods mitigate several of the error causes: first, by making use of knowledge about the mean wind direction and, second, by determining the location of air packages and sensing them in the best moment. Both methods can be applied to existing wind lidars and results are very promising.
Lidars are devices that can measure wind velocities remotely from the ground. Their estimates...
Citation