Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 5
Atmos. Meas. Tech., 12, 2631–2646, 2019
https://doi.org/10.5194/amt-12-2631-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The 10th International Carbon Dioxide Conference (ICDC10)...

Atmos. Meas. Tech., 12, 2631–2646, 2019
https://doi.org/10.5194/amt-12-2631-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 May 2019

Research article | 07 May 2019

Preparation of primary standard mixtures for atmospheric oxygen measurements with less than 1 µmol mol−1 uncertainty for oxygen molar fractions

Nobuyuki Aoki et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (30 Nov 2018)  Author's response
ED: Referee Nomination & Report Request started (09 Dec 2018) by Markus Leuenberger
RR by Anonymous Referee #2 (19 Dec 2018)
RR by Anonymous Referee #3 (18 Mar 2019)
ED: Publish subject to minor revisions (review by editor) (18 Mar 2019) by Markus Leuenberger
AR by Svenja Lange on behalf of the Authors (28 Mar 2019)  Author's response    Manuscript
ED: Publish as is (01 Apr 2019) by Markus Leuenberger
Publications Copernicus
Download
Short summary
Observation of atmospheric O2 requires highly precise standard gas mixtures with uncertainty of less than 1 ppm for the O2 mole fraction or 5 per meg for O2 / N2. The uncertainty had not been achieved due unknown uncertainty factors in mass determination of the filled source gases. We first developed the primary standard mixtures with 1 ppm for the O2 mole fraction or 5 per meg by identifying and reducing the unknown uncertainty factors.
Observation of atmospheric O2 requires highly precise standard gas mixtures with uncertainty of...
Citation