Articles | Volume 12, issue 8
https://doi.org/10.5194/amt-12-4421-2019
https://doi.org/10.5194/amt-12-4421-2019
Research article
 | 
19 Aug 2019
Research article |  | 19 Aug 2019

3+2 + X: what is the most useful depolarization input for retrieving microphysical properties of non-spherical particles from lidar measurements using the spheroid model of Dubovik et al. (2006)?

Matthias Tesche, Alexei Kolgotin, Moritz Haarig, Sharon P. Burton, Richard A. Ferrare, Chris A. Hostetler, and Detlef Müller

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Matthias Tesche on behalf of the Authors (25 Jun 2019)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (12 Jul 2019) by Vassilis Amiridis
AR by Matthias Tesche on behalf of the Authors (12 Jul 2019)  Author's response    Manuscript
ED: Publish as is (17 Jul 2019) by Vassilis Amiridis
Download
Short summary
Today, few lidar are capable of triple-wavelength particle linear depolarization ratio (PLDR) measurements. This study is the first systematic investigation of the effect of different choices of PLDR input on the inversion of lidar measurements of mineral dust and dusty mixtures using light scattering by randomly oriented spheroids. We provide recommendations of the most suitable input parameters for use with the applied methodology, based on a relational assessment of the inversion output.