Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.668 IF 3.668
  • IF 5-year value: 3.707 IF 5-year
    3.707
  • CiteScore value: 6.3 CiteScore
    6.3
  • SNIP value: 1.383 SNIP 1.383
  • IPP value: 3.75 IPP 3.75
  • SJR value: 1.525 SJR 1.525
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 77 Scimago H
    index 77
  • h5-index value: 49 h5-index 49
AMT | Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 5161–5181, 2019
https://doi.org/10.5194/amt-12-5161-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 5161–5181, 2019
https://doi.org/10.5194/amt-12-5161-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Sep 2019

Research article | 26 Sep 2019

Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi

Tongshu Zheng et al.

Viewed

Total article views: 2,890 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,102 760 28 2,890 92 20 22
  • HTML: 2,102
  • PDF: 760
  • XML: 28
  • Total: 2,890
  • Supplement: 92
  • BibTeX: 20
  • EndNote: 22
Views and downloads (calculated since 01 Mar 2019)
Cumulative views and downloads (calculated since 01 Mar 2019)

Viewed (geographical distribution)

Total article views: 2,208 (including HTML, PDF, and XML) Thereof 2,166 with geography defined and 42 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

Latest update: 08 Aug 2020
Publications Copernicus
Download
Short summary
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline to calibrate and monitor dense wireless low-cost particulate matter sensor networks (WLPMSNs) on the fly by using all available reference monitors across an area. Our approach can achieve an overall 30 % prediction error at a 24 h scale, can differentiate malfunctioning nodes, and track drift. Our solution can substantially reduce manual labor for managing WLPMSNs and prolong their lifetimes.
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline...
Citation