Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 5161–5181, 2019
https://doi.org/10.5194/amt-12-5161-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 5161–5181, 2019
https://doi.org/10.5194/amt-12-5161-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Sep 2019

Research article | 26 Sep 2019

Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi

Tongshu Zheng et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Tongshu Zheng on behalf of the Authors (19 Jul 2019)  Author's response    Manuscript
ED: Publish as is (30 Aug 2019) by Francis Pope
Publications Copernicus
Download
Short summary
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline to calibrate and monitor dense wireless low-cost particulate matter sensor networks (WLPMSNs) on the fly by using all available reference monitors across an area. Our approach can achieve an overall 30 % prediction error at a 24 h scale, can differentiate malfunctioning nodes, and track drift. Our solution can substantially reduce manual labor for managing WLPMSNs and prolong their lifetimes.
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline...
Citation