Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Download
Short summary
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline to calibrate and monitor dense wireless low-cost particulate matter sensor networks (WLPMSNs) on the fly by using all available reference monitors across an area. Our approach can achieve an overall 30 % prediction error at a 24 h scale, can differentiate malfunctioning nodes, and track drift. Our solution can substantially reduce manual labor for managing WLPMSNs and prolong their lifetimes.
AMT | Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 5161–5181, 2019
https://doi.org/10.5194/amt-12-5161-2019
Atmos. Meas. Tech., 12, 5161–5181, 2019
https://doi.org/10.5194/amt-12-5161-2019

Research article 26 Sep 2019

Research article | 26 Sep 2019

Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi

Tongshu Zheng et al.

Related authors

Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments
Tongshu Zheng, Michael H. Bergin, Karoline K. Johnson, Sachchida N. Tripathi, Shilpa Shirodkar, Matthew S. Landis, Ronak Sutaria, and David E. Carlson
Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018,https://doi.org/10.5194/amt-11-4823-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
A novel lidar gradient cluster analysis method of nocturnal boundary layer detection during air pollution episodes
Yinchao Zhang, Su Chen, Siying Chen, He Chen, and Pan Guo
Atmos. Meas. Tech., 13, 6675–6689, https://doi.org/10.5194/amt-13-6675-2020,https://doi.org/10.5194/amt-13-6675-2020, 2020
Short summary
Estimation of pollen counts from light scattering intensity when sampling multiple pollen taxa – Establishment of Automated Multi-taxa Pollen Counting Estimation System (AME System)
Kenji Miki and Shigeto Kawashima
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-320,https://doi.org/10.5194/amt-2020-320, 2020
Revised manuscript accepted for AMT
Short summary
Determination of black carbon mass concentration from aerosol light absorption using variable mass absorption cross-section
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-337,https://doi.org/10.5194/amt-2020-337, 2020
Revised manuscript accepted for AMT
Assessment of particle size magnifier inversion methods to obtain the particle size distribution from atmospheric measurements
Tommy Chan, Runlong Cai, Lauri R. Ahonen, Yiliang Liu, Ying Zhou, Joonas Vanhanen, Lubna Dada, Yan Chao, Yongchun Liu, Lin Wang, Markku Kulmala, and Juha Kangasluoma
Atmos. Meas. Tech., 13, 4885–4898, https://doi.org/10.5194/amt-13-4885-2020,https://doi.org/10.5194/amt-13-4885-2020, 2020
Short summary
Effects of Multi-Charge on Aerosol Hygroscopicity Measurement by HTDMA
Chuanyang Shen, Gang Zhao, and Chunsheng Zhao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-338,https://doi.org/10.5194/amt-2020-338, 2020
Revised manuscript accepted for AMT
Short summary

Cited articles

Austin, E., Novosselov, I., Seto, E., and Yost, M. G.: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10, 1–17, https://doi.org/10.1371/journal.pone.0137789, 2015. 
Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J.: LOF: Identifying Density-Based Local Outliers, available at: http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf (last access: 10 December 2018), 2000. 
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for bound constrained optimization, available at: http://users.iems.northwestern.edu/~nocedal/PDFfiles/limited.pdf (last access: 10 December 2018), 1994. 
CPCB: Air quality monitoring, emission inventory, and source apportionment studies for Delhi, available at: http://cpcb.nic.in/cpcbold/Delhi.pdf, (last access: 10 December 2018), 2009. 
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018. 
Publications Copernicus
Download
Short summary
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline to calibrate and monitor dense wireless low-cost particulate matter sensor networks (WLPMSNs) on the fly by using all available reference monitors across an area. Our approach can achieve an overall 30 % prediction error at a 24 h scale, can differentiate malfunctioning nodes, and track drift. Our solution can substantially reduce manual labor for managing WLPMSNs and prolong their lifetimes.
Citation