Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-5161-2019
https://doi.org/10.5194/amt-12-5161-2019
Research article
 | 
26 Sep 2019
Research article |  | 26 Sep 2019

Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi

Tongshu Zheng, Michael H. Bergin, Ronak Sutaria, Sachchida N. Tripathi, Robert Caldow, and David E. Carlson

Related authors

Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments
Tongshu Zheng, Michael H. Bergin, Karoline K. Johnson, Sachchida N. Tripathi, Shilpa Shirodkar, Matthew S. Landis, Ronak Sutaria, and David E. Carlson
Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018,https://doi.org/10.5194/amt-11-4823-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
An evaluation of the U.S. EPA's correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution events
Daniel A. Jaffe, Colleen Miller​​​​​​​, Katie Thompson, Brandon Finley, Manna Nelson, James Ouimette, and Elisabeth Andrews
Atmos. Meas. Tech., 16, 1311–1322, https://doi.org/10.5194/amt-16-1311-2023,https://doi.org/10.5194/amt-16-1311-2023, 2023
Short summary
Typhoon-associated air quality over the Guangdong–Hong Kong–Macao Greater Bay Area, China: machine-learning-based prediction and assessment
Yilin Chen, Yuanjian Yang, and Meng Gao
Atmos. Meas. Tech., 16, 1279–1294, https://doi.org/10.5194/amt-16-1279-2023,https://doi.org/10.5194/amt-16-1279-2023, 2023
Short summary
Development and Evaluation of an Improved Off-Line Aerosol Mass Spectrometry Technique
Christina N. Vasilakopoulou, Kalliopi Florou, Christos Kaltsonoudis, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-16,https://doi.org/10.5194/amt-2023-16, 2023
Revised manuscript accepted for AMT
Short summary
Quantification of primary and secondary organic aerosol sources by combined factor analysis of extractive electrospray ionisation and aerosol mass spectrometer measurements (EESI-TOF and AMS)
Yandong Tong, Lu Qi, Giulia Stefenelli, Dongyu Simon Wang, Francesco Canonaco, Urs Baltensperger, André Stephan Henry Prévôt, and Jay Gates Slowik
Atmos. Meas. Tech., 15, 7265–7291, https://doi.org/10.5194/amt-15-7265-2022,https://doi.org/10.5194/amt-15-7265-2022, 2022
Short summary
A new method for calculating average visibility from the relationship between extinction coefficient and visibility
Zefeng Zhang, Hengnan Guo, Hanqing Kang, Jing Wang, Junlin An, Xingna Yu, Jingjing Lv, and Bin Zhu
Atmos. Meas. Tech., 15, 7259–7264, https://doi.org/10.5194/amt-15-7259-2022,https://doi.org/10.5194/amt-15-7259-2022, 2022
Short summary

Cited articles

Austin, E., Novosselov, I., Seto, E., and Yost, M. G.: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10, 1–17, https://doi.org/10.1371/journal.pone.0137789, 2015. 
Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J.: LOF: Identifying Density-Based Local Outliers, available at: http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf (last access: 10 December 2018), 2000. 
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for bound constrained optimization, available at: http://users.iems.northwestern.edu/~nocedal/PDFfiles/limited.pdf (last access: 10 December 2018), 1994. 
CPCB: Air quality monitoring, emission inventory, and source apportionment studies for Delhi, available at: http://cpcb.nic.in/cpcbold/Delhi.pdf, (last access: 10 December 2018), 2009. 
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018. 
Download
Short summary
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline to calibrate and monitor dense wireless low-cost particulate matter sensor networks (WLPMSNs) on the fly by using all available reference monitors across an area. Our approach can achieve an overall 30 % prediction error at a 24 h scale, can differentiate malfunctioning nodes, and track drift. Our solution can substantially reduce manual labor for managing WLPMSNs and prolong their lifetimes.