Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-5161-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-5161-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi
Tongshu Zheng
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Duke University,
Durham, NC 27708, USA
Michael H. Bergin
Department of Civil and Environmental Engineering, Duke University,
Durham, NC 27708, USA
Ronak Sutaria
Respirer Living Sciences Pvt. Ltd, 7, Maheshwar Nivas, Tilak Road,
Santacruz (W), Mumbai 400054, India
Sachchida N. Tripathi
Department of Civil Engineering, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
Robert Caldow
TSI Inc., 500 Cardigan Road, Shoreview, MN 55126, USA
David E. Carlson
Department of Civil and Environmental Engineering, Duke University,
Durham, NC 27708, USA
Department of Biostatistics and Bioinformatics, Duke University,
Durham, NC 27708, USA
Related authors
No articles found.
Shoubhik Chakraborty, Sachchida Nand Tripathi, Davender Sethi, Akanksha Lakra, Ambasht Kumar, Pranjal Kumar Srivastava, Nihal Thukarama Rao, Avnish Tripathi, and Purushottam Kar
EGUsphere, https://doi.org/10.5194/egusphere-2025-5677, https://doi.org/10.5194/egusphere-2025-5677, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This paper proposes a novel source apportionment paradigm that predicts the relative contributions of different air-pollution sources using a machine-learning framework applied to data obtained from low-cost sensor units. A key strength of this approach is its ability to support a dense network of low-cost sensor units spanning wide geographical areas and providing source apportionment results in real time, thus helping policymakers take regulatory action to curb air pollution in real time.
Sebastian H. M. Hickman, Makoto M. Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alex Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
Geosci. Model Dev., 18, 8777–8800, https://doi.org/10.5194/gmd-18-8777-2025, https://doi.org/10.5194/gmd-18-8777-2025, 2025
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
Atmos. Chem. Phys., 25, 4617–4637, https://doi.org/10.5194/acp-25-4617-2025, https://doi.org/10.5194/acp-25-4617-2025, 2025
Short summary
Short summary
We used ground-based remote sensing data from the Aerosol Robotic Network to examine long-term trends in aerosol characteristics. We found aerosol loadings generally decreased globally, and aerosols became more scattering. These changes are closely related to variations in aerosol compositions, such as decreased anthropogenic emissions over East Asia, Europe, and North America; increased anthropogenic sources over northern India; and increased dust activity over the Arabian Peninsula.
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025, https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Short summary
Our study delves into the elemental composition of aerosols at three sites across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in chlorine (Cl)-rich and solid fuel combustion (SFC) sources, indicating dynamic emission sources, agricultural burning impacts, and meteorological influences. Surges in Cl-rich particles during cold periods highlight their role in particle growth under high-relative-humidity conditions.
Nishant Ajnoti, Hemant Gehlot, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 17, 1651–1664, https://doi.org/10.5194/amt-17-1651-2024, https://doi.org/10.5194/amt-17-1651-2024, 2024
Short summary
Short summary
This research focuses on the optimal placement of hybrid instruments (sensors and monitors) to maximize satisfaction function considering population, PM2.5 concentration, budget, and other factors. Two algorithms are developed in this study: a genetic algorithm and a greedy algorithm. We tested these algorithms on various regions. The insights of this work aid in quantitative placement of air quality monitoring instruments in large cities, moving away from ad hoc approaches.
Wei Huang, Cheng Wu, Linyu Gao, Yvette Gramlich, Sophie L. Haslett, Joel Thornton, Felipe D. Lopez-Hilfiker, Ben H. Lee, Junwei Song, Harald Saathoff, Xiaoli Shen, Ramakrishna Ramisetty, Sachchida N. Tripathi, Dilip Ganguly, Feng Jiang, Magdalena Vallon, Siegfried Schobesberger, Taina Yli-Juuti, and Claudia Mohr
Atmos. Chem. Phys., 24, 2607–2624, https://doi.org/10.5194/acp-24-2607-2024, https://doi.org/10.5194/acp-24-2607-2024, 2024
Short summary
Short summary
We present distinct molecular composition and volatility of oxygenated organic aerosol particles in different rural, urban, and mountain environments. We do a comprehensive investigation of the relationship between the chemical composition and volatility of oxygenated organic aerosol particles across different systems and environments. This study provides implications for volatility descriptions of oxygenated organic aerosol particles in different model frameworks.
Matthias Kohl, Jos Lelieveld, Sourangsu Chowdhury, Sebastian Ehrhart, Disha Sharma, Yafang Cheng, Sachchida Nand Tripathi, Mathew Sebastian, Govindan Pandithurai, Hongli Wang, and Andrea Pozzer
Atmos. Chem. Phys., 23, 13191–13215, https://doi.org/10.5194/acp-23-13191-2023, https://doi.org/10.5194/acp-23-13191-2023, 2023
Short summary
Short summary
Knowledge on atmospheric ultrafine particles (UFPs) with a diameter smaller than 100 nm is crucial for public health and the hydrological cycle. We present a new global dataset of UFP concentrations at the Earth's surface derived with a comprehensive chemistry–climate model and evaluated with ground-based observations. The evaluation results are combined with high-resolution primary emissions to downscale UFP concentrations to an unprecedented horizontal resolution of 0.1° × 0.1°.
Sophie L. Haslett, David M. Bell, Varun Kumar, Jay G. Slowik, Dongyu S. Wang, Suneeti Mishra, Neeraj Rastogi, Atinderpal Singh, Dilip Ganguly, Joel Thornton, Feixue Zheng, Yuanyuan Li, Wei Nie, Yongchun Liu, Wei Ma, Chao Yan, Markku Kulmala, Kaspar R. Daellenbach, David Hadden, Urs Baltensperger, Andre S. H. Prevot, Sachchida N. Tripathi, and Claudia Mohr
Atmos. Chem. Phys., 23, 9023–9036, https://doi.org/10.5194/acp-23-9023-2023, https://doi.org/10.5194/acp-23-9023-2023, 2023
Short summary
Short summary
In Delhi, some aspects of daytime and nighttime atmospheric chemistry are inverted, and parodoxically, vehicle emissions may be limiting other forms of particle production. This is because the nighttime emissions of nitrogen oxide (NO) by traffic and biomass burning prevent some chemical processes that would otherwise create even more particles and worsen the urban haze.
Vaishali Jain, Nidhi Tripathi, Sachchida N. Tripathi, Mansi Gupta, Lokesh K. Sahu, Vishnu Murari, Sreenivas Gaddamidi, Ashutosh K. Shukla, and Andre S. H. Prevot
Atmos. Chem. Phys., 23, 3383–3408, https://doi.org/10.5194/acp-23-3383-2023, https://doi.org/10.5194/acp-23-3383-2023, 2023
Short summary
Short summary
This research chemically characterises 173 different NMVOCs (non-methane volatile organic compounds) measured in real time for three seasons in the city of the central Indo-Gangetic basin of India, Lucknow. Receptor modelling is used to analyse probable sources of NMVOCs and their crucial role in forming ozone and secondary organic aerosols. It is observed that vehicular emissions and solid fuel combustion are the highest contributors to the emission of primary and secondary NMVOCs.
Sudipta Ghosh, Sagnik Dey, Sushant Das, Nicole Riemer, Graziano Giuliani, Dilip Ganguly, Chandra Venkataraman, Filippo Giorgi, Sachchida Nand Tripathi, Srikanthan Ramachandran, Thazhathakal Ayyappen Rajesh, Harish Gadhavi, and Atul Kumar Srivastava
Geosci. Model Dev., 16, 1–15, https://doi.org/10.5194/gmd-16-1-2023, https://doi.org/10.5194/gmd-16-1-2023, 2023
Short summary
Short summary
Accurate representation of aerosols in climate models is critical for minimizing the uncertainty in climate projections. Here, we implement region-specific emission fluxes and a more accurate scheme for carbonaceous aerosol ageing processes in a regional climate model (RegCM4) and show that it improves model performance significantly against in situ, reanalysis, and satellite data over the Indian subcontinent. We recommend improving the model performance before using them for climate studies.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Himadri Sekhar Bhowmik, Ashutosh Shukla, Vipul Lalchandani, Jay Dave, Neeraj Rastogi, Mayank Kumar, Vikram Singh, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 15, 2667–2684, https://doi.org/10.5194/amt-15-2667-2022, https://doi.org/10.5194/amt-15-2667-2022, 2022
Short summary
Short summary
This study presents comparisons between online and offline measurements of both refractory and non-refractory aerosol. This study shows differences between the measurements, related to either the limitations of the instrument (e.g., aerosol mass spectrometer only observing non-refractory aerosol) or known interferences with the technique (e.g., volatilization or reactions). The findings highlight the measurement methods' accuracy and imply the particular type of measurements needed.
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022, https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Short summary
Transpiration fluxes by vegetation are reduced under heat stress to conserve water. However, in situ observations over northern India show that the strength of the inverse association between transpiration and atmospheric vapor pressure deficit is weakening in the presence of heavy aerosol loading. This finding not only implicates the significant role of aerosols in modifying the evaporative fraction (EF) but also warrants an in-depth analysis of the aerosol–plant–temperature–EF continuum.
Karn Vohra, Eloise A. Marais, Shannen Suckra, Louisa Kramer, William J. Bloss, Ravi Sahu, Abhishek Gaur, Sachchida N. Tripathi, Martin Van Damme, Lieven Clarisse, and Pierre-F. Coheur
Atmos. Chem. Phys., 21, 6275–6296, https://doi.org/10.5194/acp-21-6275-2021, https://doi.org/10.5194/acp-21-6275-2021, 2021
Short summary
Short summary
We find satellite observations of atmospheric composition generally reproduce variability in surface air pollution, so we use their long record to estimate air quality trends in major UK and Indian cities. Our trend analysis shows that pollutants targeted with air quality policies have not declined in Delhi and Kanpur but have in London and Birmingham, with the exception of a recent and dramatic increase in reactive volatile organics in London. Unregulated ammonia has increased only in Delhi.
Pragati Rai, Jay G. Slowik, Markus Furger, Imad El Haddad, Suzanne Visser, Yandong Tong, Atinderpal Singh, Günther Wehrle, Varun Kumar, Anna K. Tobler, Deepika Bhattu, Liwei Wang, Dilip Ganguly, Neeraj Rastogi, Ru-Jin Huang, Jaroslaw Necki, Junji Cao, Sachchida N. Tripathi, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 717–730, https://doi.org/10.5194/acp-21-717-2021, https://doi.org/10.5194/acp-21-717-2021, 2021
Short summary
Short summary
We present a simple conceptual framework based on elemental size distributions and enrichment factors that allows for a characterization of major sources, site-to-site similarities, and local differences and the identification of key information required for efficient policy development. Absolute concentrations are by far the highest in Delhi, followed by Beijing, and then the European cities.
Ravi Sahu, Ayush Nagal, Kuldeep Kumar Dixit, Harshavardhan Unnibhavi, Srikanth Mantravadi, Srijith Nair, Yogesh Simmhan, Brijesh Mishra, Rajesh Zele, Ronak Sutaria, Vidyanand Motiram Motghare, Purushottam Kar, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 14, 37–52, https://doi.org/10.5194/amt-14-37-2021, https://doi.org/10.5194/amt-14-37-2021, 2021
Short summary
Short summary
A unique feature of our low-cost sensor deployment is a swap-out experiment wherein four of the six sensors were relocated to different sites in the two phases. The swap-out experiment is crucial in investigating the efficacy of calibration models when applied to weather and air quality conditions vastly different from those present during calibration. We developed a novel local calibration algorithm based on metric learning that offers stable and accurate calibration performance.
Goutam Choudhury, Bhishma Tyagi, Naresh Krishna Vissa, Jyotsna Singh, Chandan Sarangi, Sachchida Nand Tripathi, and Matthias Tesche
Atmos. Chem. Phys., 20, 15389–15399, https://doi.org/10.5194/acp-20-15389-2020, https://doi.org/10.5194/acp-20-15389-2020, 2020
Short summary
Short summary
This study uses 17 years (2001–2017) of observed rain rate, aerosol optical depth (AOD), meteorological reanalysis fields and outgoing long-wave radiation to investigate high precipitation events at the foothills of the Himalayas. Composite analysis of all data sets for high precipitation events (daily rainfall > 95th percentile) indicates clear and robust associations between high precipitation events, high aerosol loading and high moist static energy values.
Cited articles
Austin, E., Novosselov, I., Seto, E., and Yost, M. G.: Laboratory evaluation
of the Shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10,
1–17, https://doi.org/10.1371/journal.pone.0137789, 2015.
Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J.: LOF: Identifying
Density-Based Local Outliers, available at:
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf (last access: 10 December 2018), 2000.
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for
bound constrained optimization, available at:
http://users.iems.northwestern.edu/~nocedal/PDFfiles/limited.pdf (last access: 10 December 2018), 1994.
CPCB: Air quality monitoring, emission inventory, and source apportionment
studies for Delhi, available at: http://cpcb.nic.in/cpcbold/Delhi.pdf, (last
access: 10 December 2018), 2009.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018.
Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y., and Schwartz, J.:
Assessing PM2.5Exposures with High Spatiotemporal Resolution across the
Continental United States, Environ. Sci. Technol., 50, 4712–4721,
https://doi.org/10.1021/acs.est.5b06121, 2016.
Feinberg, S., Williams, R., Hagler, G. S. W., Rickard, J., Brown, R., Garver, D., Harshfield, G., Stauffer, P., Mattson, E., Judge, R., and Garvey, S.: Long-term evaluation of air sensor technology under ambient conditions in Denver, Colorado, Atmos. Meas. Tech., 11, 4605–4615, https://doi.org/10.5194/amt-11-4605-2018, 2018.
Fishbain, B. and Moreno-Centeno, E.: Self Calibrated Wireless Distributed
Environmental Sensory Networks, Sci. Rep., 6, 1–10, https://doi.org/10.1038/srep24382,
2016.
Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 19, 6843–6859, https://doi.org/10.5194/acp-19-6843-2019, 2019.
Gao, M., Cao, J., and Seto, E.: A distributed network of low-cost continuous
reading sensors to measure spatiotemporal variations of PM2.5 in Xi'an,
China, Environ. Pollut., 199, 56–65, https://doi.org/10.1016/j.envpol.2015.01.013,
2015.
Gorai, A. K., Tchounwou, P. B., Biswal, S., and Tuluri, F.: Spatio-Temporal
Variation of Particulate Matter (PM2.5) Concentrations and Its Health
Impacts in a Mega City, Delhi in India, Environ. Health Insights, 12,
1–9, https://doi.org/10.1177/1178630218792861, 2018.
Hagler, G. S. W., Williams, R., Papapostolou, V., and Polidori, A.: Air
Quality Sensors and Data Adjustment Algorithms: When Is It No Longer a
Measurement?, Environ. Sci. Technol., 52, 5530–5531,
https://doi.org/10.1021/acs.est.8b01826, 2018.
Holdaway, M. R.: Spatial modeling and interpolation of monthly temperature
using kriging, Clim. Res., 6, 215–225, https://doi.org/10.3354/cr006215, 1996.
Holstius, D. M., Pillarisetti, A., Smith, K. R., and Seto, E.: Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California, Atmos. Meas. Tech., 7, 1121–1131, https://doi.org/10.5194/amt-7-1121-2014, 2014.
Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., and Morawska, L.: The influence of humidity on the performance of a low-cost air particle mass sensor and the effect of atmospheric fog, Atmos. Meas. Tech., 11, 4883–4890, https://doi.org/10.5194/amt-11-4883-2018, 2018.
Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., Weinstock, L., Zimmer-Dauphinee, S., and Buckley, K.: Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States, Atmos. Meas. Tech., 9, 5281–5292, https://doi.org/10.5194/amt-9-5281-2016, 2016.
Johnson, K. K., Bergin, M. H., Russell, A. G. and Hagler, G. S. W.: Field
test of several low-cost particulate matter sensors in high and low
concentration urban environments, Aerosol Air Qual. Res., 18, 565–578,
https://doi.org/10.4209/aaqr.2017.10.0418, 2018.
Kelleher, S., Quinn, C., Miller-Lionberg, D., and Volckens, J.: A low-cost particulate matter (PM2.5) monitor for wildland fire smoke, Atmos. Meas. Tech., 11, 1087–1097, https://doi.org/10.5194/amt-11-1087-2018, 2018.
Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D.,
Martin, R., and Butterfield, A.: Ambient and laboratory evaluation of a
low-cost particulate matter sensor, Environ. Pollut., 221, 491–500,
https://doi.org/10.1016/j.envpol.2016.12.039, 2017.
Kizel, F., Etzion, Y., Shafran-Nathan, R., Levy, I., Fishbain, B.,
Bartonova, A., and Broday, D. M.: Node-to-node field calibration of wireless
distributed air pollution sensor network, Environ. Pollut., 233, 900–909,
https://doi.org/10.1016/j.envpol.2017.09.042, 2018.
Lewis, A. and Edwards, P.: Validate personal air-pollution sensors, Nature,
535, 29–31, https://doi.org/10.1038/535029a, 2016.
Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other, Ann.
Math. Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947.
Mukherjee, A., Stanton, L. G., Graham, A. R., and Roberts, P. T.: Assessing
the utility of low-cost particulate matter sensors over a 12-week period in
the Cuyama valley of California, Sensors, 17, 1805,
https://doi.org/10.3390/s17081805, 2017.
Ozler, S., Johnson, K. K., Bergin, M. H. and Schauer, J. J.: Personal
Exposure to PM2.5 in the Various Microenvironments as a Traveler in the
Southeast Asian Countries, 14, 170–184, https://doi.org/10.3844/ajessp.2018.170.184, 2018.
Rasmussen, C. E. and Williams, C. K. I.: 2. Regression, in: Gaussian
Processes for Machine Learning, MIT Press, 8–31, 2006.
Sayahi, T., Butterfield, A., and Kelly, K. E.: Long-term field evaluation of the Plantower PMS low-cost particulate
matter sensors, Environ. Pollut., 245, 932–940,
https://doi.org/10.1016/j.envpol.2018.11.065, 2019.
Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., and
Bartonova, A.: Mapping urban air quality in near real-time using
observations from low-cost sensors and model information, Environ. Int.,
106, 234–247, https://doi.org/10.1016/j.envint.2017.05.005, 2017.
Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., Kilaru, V. J., and Preuss, P. W.: The Changing Paradigm of Air Pollution Monitoring, Environ. Sci. Technol., 47, 11369–11377, https://doi.org/10.1021/es4022602, 2013.
South Coast Air Quality Management District (SCAQMD): Field Evaluation
AirBeam PM Sensor, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/
(last access: 10 January 2018), 2015a.
South Coast Air Quality Management District (SCAQMD): Field Evaluation
AlphaSense OPC-N2 Sensor, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/alphasense
(last access: 10 January 2018), 2015b.
South Coast Air Quality Management District (SCAQMD): Field Evaluation Laser
Egg PM Sensor, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/laser
(last access: 10 January 2018), 2017a.
South Coast Air Quality Management District (SCAQMD): Field Evaluation
Purple Air PM Sensor, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purpleair
(last access: 10 January 2018), 2017b.
South Coast Air Quality Management District (SCAQMD): Field Evaluation
Purple Air (PA-II) PM Sensor, available at:
http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purple
(last access: 10 January 2018), 2017c.
Takruri, M., Challa, S., and Yunis, R.: Data fusion techniques for auto
calibration in wireless sensor networks, Inf. Fusion, 132–139, available
at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5203880 (last access: 10 December 2018), 2009.
Tiwari, G.: Urban Transport Priorities, Cities, 19, 95–103, available
at: http://www.mumbaidp24seven.in/reference/geetam.pdf (last access: 10 December 2018), 2002.
Tiwari, S., Chate, D. M., Pragya, P., Ali, K., and Bisht, D. S. F.:
Variations in mass of the PM10, PM2.5 and PM1 during the
monsoon and the winter at New Delhi, Aerosol Air Qual. Res., 12, 20–29,
https://doi.org/10.4209/aaqr.2011.06.0075, 2012.
Tiwari, S., Hopke, P. K., Pipal, A. S., Srivastava, A. K., Bisht, D. S.,
Tiwari, S., Singh, A. K., Soni, V. K., and Attri, S. D.: Intra-urban
variability of particulate matter (PM2.5 and PM10) and its
relationship with optical properties of aerosols over Delhi, India, Atmos.
Res., 166, 223–232, https://doi.org/10.1016/j.atmosres.2015.07.007, 2015.
Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., and Biswas, P.: Laboratory
Evaluation and Calibration of Three Low-Cost Particle Sensors for
Particulate Matter Measurement, Aerosol Sci. Technol., 49, 1063–1077,
https://doi.org/10.1080/02786826.2015.1100710, 2015.
Wilcoxon, F.: Individual Comparisons by Ranking Methods, Biometrics
Bulletin, 1, 80–83, https://doi.org/10.2307/3001968, 1945.
Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., Sutaria, R., and Carlson, D. E.: Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments, Atmos. Meas. Tech., 11, 4823–4846, https://doi.org/10.5194/amt-11-4823-2018, 2018.
Zuo, J. X., Ji, W., Ben, Y. J., Hassan, M. A., Fan, W. H., Bates, L., and
Dong, Z. M.: Using big data from air quality monitors to evaluate indoor
PM2.5 exposure in buildings: Case study in Beijing, Environ. Pollut., 240,
839–847, https://doi.org/10.1016/j.envpol.2018.05.030, 2018.
Short summary
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline to calibrate and monitor dense wireless low-cost particulate matter sensor networks (WLPMSNs) on the fly by using all available reference monitors across an area. Our approach can achieve an overall 30 % prediction error at a 24 h scale, can differentiate malfunctioning nodes, and track drift. Our solution can substantially reduce manual labor for managing WLPMSNs and prolong their lifetimes.
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline...