Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 5161–5181, 2019
Atmos. Meas. Tech., 12, 5161–5181, 2019

Research article 26 Sep 2019

Research article | 26 Sep 2019

Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi

Tongshu Zheng et al.

Related authors

Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments
Tongshu Zheng, Michael H. Bergin, Karoline K. Johnson, Sachchida N. Tripathi, Shilpa Shirodkar, Matthew S. Landis, Ronak Sutaria, and David E. Carlson
Atmos. Meas. Tech., 11, 4823–4846,,, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements
Melinda K. Schueneman, Benjamin A. Nault, Pedro Campuzano-Jost, Duseong S. Jo, Douglas A. Day, Jason C. Schroder, Brett B. Palm, Alma Hodzic, Jack E. Dibb, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 2237–2260,,, 2021
Short summary
Determination of equivalent black carbon mass concentration from aerosol light absorption using variable mass absorption cross section
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1319–1331,,, 2021
Effects of multi-charge on aerosol hygroscopicity measurement by a HTDMA
Chuanyang Shen, Gang Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1293–1301,,, 2021
Short summary
A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data
Francesco Canonaco, Anna Tobler, Gang Chen, Yulia Sosedova, Jay Gates Slowik, Carlo Bozzetti, Kaspar Rudolf Daellenbach, Imad El Haddad, Monica Crippa, Ru-Jin Huang, Markus Furger, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Meas. Tech., 14, 923–943,,, 2021
Short summary
Estimation of pollen counts from light scattering intensity when sampling multiple pollen taxa – establishment of an automated multi-taxa pollen counting estimation system (AME system)
Kenji Miki and Shigeto Kawashima
Atmos. Meas. Tech., 14, 685–693,,, 2021
Short summary

Cited articles

Austin, E., Novosselov, I., Seto, E., and Yost, M. G.: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10, 1–17,, 2015. 
Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J.: LOF: Identifying Density-Based Local Outliers, available at: (last access: 10 December 2018), 2000. 
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for bound constrained optimization, available at: (last access: 10 December 2018), 1994. 
CPCB: Air quality monitoring, emission inventory, and source apportionment studies for Delhi, available at:, (last access: 10 December 2018), 2009. 
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720,, 2018. 
Short summary
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline to calibrate and monitor dense wireless low-cost particulate matter sensor networks (WLPMSNs) on the fly by using all available reference monitors across an area. Our approach can achieve an overall 30 % prediction error at a 24 h scale, can differentiate malfunctioning nodes, and track drift. Our solution can substantially reduce manual labor for managing WLPMSNs and prolong their lifetimes.