Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-5161-2019
https://doi.org/10.5194/amt-12-5161-2019
Research article
 | 
26 Sep 2019
Research article |  | 26 Sep 2019

Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi

Tongshu Zheng, Michael H. Bergin, Ronak Sutaria, Sachchida N. Tripathi, Robert Caldow, and David E. Carlson

Related authors

A Framework for Dynamic Hyper-local Source Apportionment using Low-cost Sensors for Real-time Policy Action
Shoubhik Chakraborty, Sachchida Nand Tripathi, Davender Sethi, Akanksha Lakra, Ambasht Kumar, Pranjal Kumar Srivastava, Nihal Thukarama Rao, Avnish Tripathi, and Purushottam Kar
EGUsphere, https://doi.org/10.5194/egusphere-2025-5677,https://doi.org/10.5194/egusphere-2025-5677, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Applications of Machine Learning and Artificial Intelligence in Tropospheric Ozone Research
Sebastian H. M. Hickman, Makoto M. Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alex Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
Geosci. Model Dev., 18, 8777–8800, https://doi.org/10.5194/gmd-18-8777-2025,https://doi.org/10.5194/gmd-18-8777-2025, 2025
Short summary
Long-term trends in aerosol properties derived from AERONET measurements
Zhenyu Zhang, Jing Li, Huizheng Che, Yueming Dong, Oleg Dubovik, Thomas Eck, Pawan Gupta, Brent Holben, Jhoon Kim, Elena Lind, Trailokya Saud, Sachchida Nand Tripathi, and Tong Ying
Atmos. Chem. Phys., 25, 4617–4637, https://doi.org/10.5194/acp-25-4617-2025,https://doi.org/10.5194/acp-25-4617-2025, 2025
Short summary
Measurement report: Sources and meteorology influencing highly time-resolved PM2.5 trace elements at three urban sites in the extremely polluted Indo-Gangetic Plain in India
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025,https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Hybrid instrument network optimization for air quality monitoring
Nishant Ajnoti, Hemant Gehlot, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 17, 1651–1664, https://doi.org/10.5194/amt-17-1651-2024,https://doi.org/10.5194/amt-17-1651-2024, 2024
Short summary

Cited articles

Austin, E., Novosselov, I., Seto, E., and Yost, M. G.: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10, 1–17, https://doi.org/10.1371/journal.pone.0137789, 2015. 
Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J.: LOF: Identifying Density-Based Local Outliers, available at: http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf (last access: 10 December 2018), 2000. 
Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for bound constrained optimization, available at: http://users.iems.northwestern.edu/~nocedal/PDFfiles/limited.pdf (last access: 10 December 2018), 1994. 
CPCB: Air quality monitoring, emission inventory, and source apportionment studies for Delhi, available at: http://cpcb.nic.in/cpcbold/Delhi.pdf, (last access: 10 December 2018), 2009. 
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C., and Pope, F. D.: Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11, 709–720, https://doi.org/10.5194/amt-11-709-2018, 2018. 
Download
Short summary
Here we present a simultaneous Gaussian process regression (GPR) and linear regression pipeline to calibrate and monitor dense wireless low-cost particulate matter sensor networks (WLPMSNs) on the fly by using all available reference monitors across an area. Our approach can achieve an overall 30 % prediction error at a 24 h scale, can differentiate malfunctioning nodes, and track drift. Our solution can substantially reduce manual labor for managing WLPMSNs and prolong their lifetimes.
Share