Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 10
Atmos. Meas. Tech., 12, 5363–5379, 2019
https://doi.org/10.5194/amt-12-5363-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 5363–5379, 2019
https://doi.org/10.5194/amt-12-5363-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Oct 2019

Research article | 09 Oct 2019

Free-fall experiments of volcanic ash particles using a 2-D video disdrometer

Sung-Ho Suh et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (13 Aug 2019)  Author's response
ED: Publish as is (19 Aug 2019) by Alexander Kokhanovsky
Publications Copernicus
Download
Short summary
This is a fundamental study on the features of aerodynamic parameters: terminal velocity, axis ratio, and canting angle. These are necessary for developing a quantitative ash fall estimation method based on weather radar. They were analyzed under controlled conditions from laboratory free-fall experiments, since the aerodynamic properties of the particles are highly dependent on external conditions. These results will help in the development of quantitative ash estimation.
This is a fundamental study on the features of aerodynamic parameters: terminal velocity, axis...
Citation