Research article
09 Oct 2019
Research article | 09 Oct 2019
Free-fall experiments of volcanic ash particles using a 2-D video disdrometer
Sung-Ho Suh et al.
Related authors
Related subject area
Microwave Radar/radiometer for Arctic Clouds (MiRAC): first insights from the ACLOUD campaign
Mario Mech, Leif-Leonard Kliesch, Andreas Anhäuser, Thomas Rose, Pavlos Kollias, and Susanne Crewell
Atmos. Meas. Tech., 12, 5019–5037, https://doi.org/10.5194/amt-12-5019-2019,https://doi.org/10.5194/amt-12-5019-2019, 2019
Short summary
Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019,https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
Improvement of airborne retrievals of cloud droplet number concentration of trade wind cumulus using a synergetic approach
Kevin Wolf, André Ehrlich, Marek Jacob, Susanne Crewell, Martin Wirth, and Manfred Wendisch
Atmos. Meas. Tech., 12, 1635–1658, https://doi.org/10.5194/amt-12-1635-2019,https://doi.org/10.5194/amt-12-1635-2019, 2019
Short summary
Halo ratio from ground-based all-sky imaging
Paolo Dandini, Zbigniew Ulanowski, David Campbell, and Richard Kaye
Atmos. Meas. Tech., 12, 1295–1309, https://doi.org/10.5194/amt-12-1295-2019,https://doi.org/10.5194/amt-12-1295-2019, 2019
Short summary
Polarization lidar: an extended three-signal calibration approach
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, Moritz Haarig, Jörg Schmidt, and Ulla Wandinger
Atmos. Meas. Tech., 12, 1077–1093, https://doi.org/10.5194/amt-12-1077-2019,https://doi.org/10.5194/amt-12-1077-2019, 2019
Short summary
The NCAS mobile dual-polarisation Doppler X-band weather radar (NXPol)
Ryan R. Neely III, Lindsay Bennett, Alan Blyth, Chris Collier, David Dufton, James Groves, Daniel Walker, Chris Walden, John Bradford, Barbara Brooks, Freya I. Addison, John Nicol, and Ben Pickering
Atmos. Meas. Tech., 11, 6481–6494, https://doi.org/10.5194/amt-11-6481-2018,https://doi.org/10.5194/amt-11-6481-2018, 2018
Short summary
Initial report on polar mesospheric cloud observations by Himawari-8
Takuo T. Tsuda, Yuta Hozumi, Kento Kawaura, Keisuke Hosokawa, Hidehiko Suzuki, and Takuji Nakamura
Atmos. Meas. Tech., 11, 6163–6168, https://doi.org/10.5194/amt-11-6163-2018,https://doi.org/10.5194/amt-11-6163-2018, 2018
Short summary
A simple biota removal algorithm for 35 GHz cloud radar measurements
Madhu Chandra R. Kalapureddy, Patra Sukanya, Subrata K. Das, Sachin M. Deshpande, Govindan Pandithurai, Andrew L. Pazamany, Jha Ambuj K., Kaustav Chakravarty, Prasad Kalekar, Hari Krishna Devisetty, and Sreenivas Annam
Atmos. Meas. Tech., 11, 1417–1436, https://doi.org/10.5194/amt-11-1417-2018,https://doi.org/10.5194/amt-11-1417-2018, 2018
Short summary
Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada
Emily M. McCullough, Robert J. Sica, James R. Drummond, Graeme Nott, Christopher Perro, Colin P. Thackray, Jason Hopper, Jonathan Doyle, Thomas J. Duck, and Kaley A. Walker
Atmos. Meas. Tech., 10, 4253–4277, https://doi.org/10.5194/amt-10-4253-2017,https://doi.org/10.5194/amt-10-4253-2017, 2017
Short summary
ISMAR: an airborne submillimetre radiometer
Stuart Fox, Clare Lee, Brian Moyna, Martin Philipp, Ian Rule, Stuart Rogers, Robert King, Matthew Oldfield, Simon Rea, Manju Henry, Hui Wang, and R. Chawn Harlow
Atmos. Meas. Tech., 10, 477–490, https://doi.org/10.5194/amt-10-477-2017,https://doi.org/10.5194/amt-10-477-2017, 2017
Short summary
Application of oxygen A-band equivalent width to disambiguate downwelling radiances for cloud optical depth measurement
Edward R. Niple, Herman E. Scott, John A. Conant, Stephen H. Jones, Frank J. Iannarilli, and Wellesley E. Pereira
Atmos. Meas. Tech., 9, 4167–4179, https://doi.org/10.5194/amt-9-4167-2016,https://doi.org/10.5194/amt-9-4167-2016, 2016
How big is an OMI pixel?
Martin de Graaf, Holger Sihler, Lieuwe G. Tilstra, and Piet Stammes
Atmos. Meas. Tech., 9, 3607–3618, https://doi.org/10.5194/amt-9-3607-2016,https://doi.org/10.5194/amt-9-3607-2016, 2016
Short summary
Design and characterization of specMACS, a multipurpose hyperspectral cloud and sky imager
Florian Ewald, Tobias Kölling, Andreas Baumgartner, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 9, 2015–2042, https://doi.org/10.5194/amt-9-2015-2016,https://doi.org/10.5194/amt-9-2015-2016, 2016
Short summary
A microbolometer-based far infrared radiometer to study thin ice clouds in the Arctic
Quentin Libois, Christian Proulx, Liviu Ivanescu, Laurence Coursol, Ludovick S. Pelletier, Yacine Bouzid, Francesco Barbero, Éric Girard, and Jean-Pierre Blanchet
Atmos. Meas. Tech., 9, 1817–1832, https://doi.org/10.5194/amt-9-1817-2016,https://doi.org/10.5194/amt-9-1817-2016, 2016
Short summary
Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler
J. Bühl, R. Leinweber, U. Görsdorf, M. Radenz, A. Ansmann, and V. Lehmann
Atmos. Meas. Tech., 8, 3527–3536, https://doi.org/10.5194/amt-8-3527-2015,https://doi.org/10.5194/amt-8-3527-2015, 2015
Short summary
Performance assessment of a triple-frequency spaceborne cloud–precipitation radar concept using a global cloud-resolving model
J. Leinonen, M. D. Lebsock, S. Tanelli, K. Suzuki, H. Yashiro, and Y. Miyamoto
Atmos. Meas. Tech., 8, 3493–3517, https://doi.org/10.5194/amt-8-3493-2015,https://doi.org/10.5194/amt-8-3493-2015, 2015
Short summary
Development of a sky imaging system for short-term solar power forecasting
B. Urquhart, B. Kurtz, E. Dahlin, M. Ghonima, J. E. Shields, and J. Kleissl
Atmos. Meas. Tech., 8, 875–890, https://doi.org/10.5194/amt-8-875-2015,https://doi.org/10.5194/amt-8-875-2015, 2015
HAMP – the microwave package on the High Altitude and LOng range research aircraft (HALO)
M. Mech, E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and B. Stevens
Atmos. Meas. Tech., 7, 4539–4553, https://doi.org/10.5194/amt-7-4539-2014,https://doi.org/10.5194/amt-7-4539-2014, 2014
Short summary
Potential of airborne lidar measurements for cirrus cloud studies
S. Groß, M. Wirth, A. Schäfler, A. Fix, S. Kaufmann, and C. Voigt
Atmos. Meas. Tech., 7, 2745–2755, https://doi.org/10.5194/amt-7-2745-2014,https://doi.org/10.5194/amt-7-2745-2014, 2014
G band atmospheric radars: new frontiers in cloud physics
A. Battaglia, C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, and G. W. Petty
Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014,https://doi.org/10.5194/amt-7-1527-2014, 2014
Optical thickness and effective radius of Arctic boundary-layer clouds retrieved from airborne nadir and imaging spectrometry
E. Bierwirth, A. Ehrlich, M. Wendisch, J.-F. Gayet, C. Gourbeyre, R. Dupuy, A. Herber, R. Neuber, and A. Lampert
Atmos. Meas. Tech., 6, 1189–1200, https://doi.org/10.5194/amt-6-1189-2013,https://doi.org/10.5194/amt-6-1189-2013, 2013
A method for cloud detection and opacity classification based on ground based sky imagery
M. S. Ghonima, B. Urquhart, C. W. Chow, J. E. Shields, A. Cazorla, and J. Kleissl
Atmos. Meas. Tech., 5, 2881–2892, https://doi.org/10.5194/amt-5-2881-2012,https://doi.org/10.5194/amt-5-2881-2012, 2012
Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8
S. A. Buehler, E. Defer, F. Evans, S. Eliasson, J. Mendrok, P. Eriksson, C. Lee, C. Jiménez, C. Prigent, S. Crewell, Y. Kasai, R. Bennartz, and A. J. Gasiewski
Atmos. Meas. Tech., 5, 1529–1549, https://doi.org/10.5194/amt-5-1529-2012,https://doi.org/10.5194/amt-5-1529-2012, 2012
Cited articles
Bagheri, G., Bonadonna, C., Manzella, I., Pontelandolfo, P., and Haas, P.:
Dedicated vertical wind tunnel for the study of sedimentation of
non-spherical particles, Rev. Sci. Instrum., 84, 054501, https://doi.org/10.1063/1.4805019, 2013.
Beckett, F., Witham, C., Hort, M., Stevenson, J., Bonadonna, C., and
Millington, S.: Sensitivity of dispersion model forecasts of volcanic ash
clouds to the physical characteristics of the particles, J. Geophys. Res.-Atmos., 120, 11636–11652, https://doi.org/10.1002/2015JD023609, 2015.
Bonadonna, C., Genco, R., Gouhier, M., Pistolesi, M., Cioni, R., Alfano, F.,
Hoskuldsson, A., and Ripepe, M.: Tephra sedimentation during the 2010
Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite
observations, J. Geophys. Res.-Sol. Ea.,
116, B12202, https://doi.org/10.1029/2011JB008462, 2011.
Bonadonna, C., Folch, A., Loughlin, S., and Puempel, H.: Future developments
in modelling and monitoring of volcanic ash clouds: outcomes from the first
IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation, B. Volcanol., 74, 1–10, 2012.
Böhm, H. P.: A general equation for the terminal fall speed of solid
hydrometeors, J. Atmos. Sci., 46, 2419–2427, 1989.
Coltelli, M., Miraglia, L., and Scollo, S.: Characterization of shape and
terminal velocity of tephra particles erupted during the 2002 eruption of
Etna volcano, Italy, B. Volcanol., 70, 1103–1112, 2008.
Del Bello, E., Taddeucci, J., Vitturi, M. d. M., Scarlato, P., Andronico,
D., Scollo, S., Kueppers, U., and Ricci, T.: Effect of particle volume
fraction on the settling velocity of volcanic ash particles: insights from
joint experimental and numerical simulations, Sci. Rep., 7, 39620, https://doi.org/10.1038/srep39620,
2017.
Dellino, P., Mele, D., Bonasia, R., Braia, G., La Volpe, L., and Sulpizio,
R.: The analysis of the influence of pumice shape on its terminal velocity,
Geophys. Res. Lett., 32, L21306, https://doi.org/10.1029/2005GL023954, 2005.
Dioguardi, F., Mele, D., Dellino, P., and Dürig, T.: The terminal
velocity of volcanic particles with shape obtained from 3-D X-ray
microtomography, J. Volcanol. Geoth. Res., 329, 41–53,
2017.
Dioguardi, F., Mele, D., and Dellino, P.: A New One-Equation Model of Fluid
Drag for Irregularly Shaped Particles Valid Over a Wide Range of Reynolds
Number, J. Geophys. Res.-Sol. Ea., 123, 144–156, 2018.
Donnadieu, F.: Volcanological applications of Doppler radars: A review and
examples from a transportable pulse radar in L-band, INTECH Open Access
Publisher, 409–446, 2012.
Ganser, G. H.: A rational approach to drag prediction of spherical and
nonspherical particles, Powder Technol., 77, 143–152, 1993.
Garboczi, E. and Bullard, J.: 3D analytical mathematical models of random
star-shape particles via a combination of X-ray computed microtomography and
spherical harmonic analysis, Adv. Powder Technol., 28, 325–339, 2017.
Happel, J. and Brenner, H.: Low Reynolds number hydrodynamics: with special
applications to particulate media, Springer Science & Business Media,
1–543, 2012.
Harris, D. M. and Rose, W. I.: Estimating particle sizes, concentrations,
and total mass of ash in volcanic clouds using weather radar, J. Geophys. Res.-Oceans, 88, 10969–10983, 1983.
Hotta, K., Iguchi, M., and Tameguri, T.: Rapid dike intrusion into
Sakurajima volcano on August 15, 2015, as detected by multi-parameter ground
deformation observations, Earth Planet. Sc. Lett., 68, 1–9, https://doi.org/10.1186/s40623-016-0450-0, 2016.
Hölzer, A. and Sommerfeld, M.: New simple correlation formula for the
drag coefficient of non-spherical particles, Powder Technol., 184,
361–365, 2008.
Huang, G.-J., Bringi, V., Cifelli, R., Hudak, D., and Petersen, W.: A
methodology to derive radar reflectivity-liquid equivalent snow rate
relations using C-band radar and a 2-D video disdrometer, J. Atmos. Ocean. Tech., 27, 637–651, 2010.
Huang, G.-J., Bringi, V., Moisseev, D., Petersen, W. A., Bliven, L., and
Hudak, D.: Use of 2-D-video disdrometer to derive mean density-size and Ze–SR relations: Four snow cases from the light precipitation validation
experiment, Atmos. Res., 153, 34–48, 2015.
Iguchi, M.: Magma Movement from the Deep to Shallow Sakurajima Volcano as
Revealed by Geophysical Observations (
< Special Section
> Sakurajima Special Issue), Bulletin of the Volcanological Society of Japan,
58, 1–18, 2013.
Jaffrain, J., Studzinski, A., and Berne, A.: A network of disdrometers to
quantify the small-scale variability of the raindrop size distribution,
Water Resour. Res., 47, 1–8, https://doi.org/10.1029/2010WR009872, 2011.
Langmann, B., Folch, A., Hensch, M., and Matthias, V.: Volcanic ash over
Europe during the eruption of Eyjafjallajökull on Iceland, April–May
2010, Atmos. Environ., 48, 1–8, 2012.
Löffler-Mang, M. and Joss. J: An optical disdrometer for measuring size
and velocity of hydrometeors, J. Atmos. Ocean. Tech.,
17, 130–139, 2000.
Maki, M., Maesaka, T., Kozono, T., Nagai, M., Furukawa, R., Nakada, S.,
Koshida, T., and Takenaka, H.: Quantitative volcanic ash estimation by
operational polarimetric weather radar, The 9th International Symposium on Tropospheric Profiling, L'Aquila, Italy, September 2012, ISBN 978-90-815839-4-7, 2012.
Maki, M., Maesaka, T., Muraji, Y., and Suzuki, I.: Statistical analysis of
volcanic ash measured by X-band polarimetric radar, 8th European Conference on Radar in Meteorology and Hydrology, 15 September, 2014.
Maki, M., Iguchi, M., Maesaka, T., Miwa, T., Tanada, T., Kozono, T.,
Momotani, T., Yamaji, A., and Kakimoto, I.: Preliminary results of weather
radar observations of sakurajima volcanic smoke, J. Disaster
Res., 11, 15–30, 2016.
Marzano, F. S., Barbieri, S., Vulpiani, G., and Rose, W. I.: Volcanic ash
cloud retrieval by ground-based microwave weather radar, IEEE T. Geosci. Remote, 44, 3235–3246, 2006.
Marzano, F. S., Picciotti, E., Vulpiani, G., and Montopoli, M.: Synthetic
signatures of volcanic ash cloud particles from X-band dual-polarization
radar, IEEE T. Geosci. Remote, 50, 193–211,
2012.
Marzano, F. S., Picciotti, E., Montopoli, M., and Vulpiani, G.: Inside
volcanic clouds: Remote sensing of ash plumes using microwave weather
radars, B. Am. Meteorol. Soc., 94, 1567–1586,
2013.
Oguchi, T., Udagawa, M., Nanba, N., Maki, M., and Ishimine, Y.: Measurements
of dielectric constant of volcanic ash erupted from five volcanoes in Japan,
IEEE T. Geosci. Remote, 47, 1089–1096, 2009.
Poulidis, A. P., Takemi, T., Iguchi, M., and Renfrew, I. A.: Orographic
effects on the transport and deposition of volcanic ash: A case study of
Mount Sakurajima, Japan, J. Geophys. Res.-Atmos., 122,
9332–9350, 2017.
Rong, L., Zhou, Z., and Yu, A.: Lattice–Boltzmann simulation of fluid flow
through packed beds of uniform ellipsoids, Powder Technol., 285, 146–156,
2015.
Rosenfeld, D. and Ulbrich, C. W.: Cloud microphysical properties, processes,
and rainfall estimation opportunities, in: Radar and Atmospheric Science: A
Collection of Essays in Honor of David Atlas, Springer, 30, 237–258, 2003.
Seligman, A. N., Bindeman, I. N., Watkins, J. M., and Ross, A. M.: Water in
volcanic glass: From volcanic degassing to secondary hydration, Geochim. Cosmochim. Ac., 191, 216–238, 2016.
Sheppard, B. E.: Measurement of raindrop size distributions using a small
Doppler radar, J. Atmos. Ocean. Tech., 7, 255–268,
1990.
Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J.: The
encyclopedia of volcanoes, Elsevier, 30, 1–1456, 2015.
Stevenson, J. A., Millington, S. C., Beckett, F. M., Swindles, G. T., and Thordarson, T.: Big grains go far: understanding the discrepancy between tephrochronology and satellite infrared measurements of volcanic ash, Atmos. Meas. Tech., 8, 2069–2091, https://doi.org/10.5194/amt-8-2069-2015, 2015.
Stokes, G. G.: On the effect of the internal friction of fluids on the
motion of pendulums, Pitt Press Cambridge, 1–86, 1851.
Suzuki, T.: A theoretical model for dispersion of tephra, Arc volcanism:
physics and tectonics, 95–113, 1983.
Takahashi, M., Otsuka, T., Sako, H., Kawamata, H., Yasui, M., Kanamaru, T.,
Otsuki, M., Kobayashi, T., Ishihara, K., and Miki, D.: Temporal Variation
for Magmatic Chemistry of the Sakurajima Volcano and Aira Caldera Region,
Southern Kyushu, Southwest Japan since 61 ka and Its Implications for the
Evolution of Magma Chamber System, Bulletin of the Volcanological Society of
Japan, 58, 19–42, 2013.
Tajima, Y., Ohara, D., Fukuda, K., and Shimomura, S.: Development of
Automatic Tephrometer for Monitoring of Volcano, 23, 39–46, 2015.
Tokay, A., Wolff, D. B., and Petersen, W. A.: Evaluation of the new version
of the laser-optical disdrometer, OTT Parsivel2, J. Atmos. Ocean. Tech., 31, 1276–1288, 2014.
Van Eaton, A. R., Muirhead, J. D., Wilson, C. J., and Cimarelli, C.: Growth
of volcanic ash aggregates in the presence of liquid water and ice: an
experimental approach, B. Volcanol., 74, 1963–1984, 2012.
Waterman, P. C.: Symmetry, unitarity, and geometry in electromagnetic
scattering, Phys. Rev. D, 3, 825, https://doi.org/10.1103/PhysRevD.3.825, 1971.
Wilson, L. and Huang, T.: The influence of shape on the atmospheric settling
velocity of volcanic ash particles, Earth Planet. Sc. Lett., 44,
311–324, 1979.
Wilson, T. M., Stewart, C., Sword-Daniels, V., Leonard, G. S., Johnston, D.
M., Cole, J. W., Wardman, J., Wilson, G., and Barnard, S. T.: Volcanic ash
impacts on critical infrastructure, Phys. Chem. Earth, 45, 5–23, 2012.
Yokoo, A. and Ishihara, K.: Volcanic activity around Showa Crater of
Sakurajima Volcano monitored with infrared and video cameras, Annuals of
Disas. Prev. Res. Inst., Kyoto Univ., No. 50 C., 2007.