Articles | Volume 12, issue 11
https://doi.org/10.5194/amt-12-5997-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-5997-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data
Robert Reichert
CORRESPONDING AUTHOR
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Bernd Kaifler
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Natalie Kaifler
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Markus Rapp
Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
Pierre-Dominique Pautet
Center for Atmospheric and Space Sciences and Physics Department, Utah State University, Logan, Utah, USA
Michael J. Taylor
Center for Atmospheric and Space Sciences and Physics Department, Utah State University, Logan, Utah, USA
Alexander Kozlovsky
Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland
Mark Lester
Department of Physics and Astronomy, University Leicester, Leicester, UK
Rigel Kivi
Space and Earth Observation Centre, Finnish Meteorological Institute, Sodankylä, Finland
Viewed
Total article views: 3,528 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 03 Jun 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,388 | 1,074 | 66 | 3,528 | 88 | 81 |
- HTML: 2,388
- PDF: 1,074
- XML: 66
- Total: 3,528
- BibTeX: 88
- EndNote: 81
Total article views: 2,650 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 19 Nov 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,950 | 638 | 62 | 2,650 | 81 | 76 |
- HTML: 1,950
- PDF: 638
- XML: 62
- Total: 2,650
- BibTeX: 81
- EndNote: 76
Total article views: 878 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 03 Jun 2019)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
438 | 436 | 4 | 878 | 7 | 5 |
- HTML: 438
- PDF: 436
- XML: 4
- Total: 878
- BibTeX: 7
- EndNote: 5
Viewed (geographical distribution)
Total article views: 3,528 (including HTML, PDF, and XML)
Thereof 3,168 with geography defined
and 360 with unknown origin.
Total article views: 2,650 (including HTML, PDF, and XML)
Thereof 2,401 with geography defined
and 249 with unknown origin.
Total article views: 878 (including HTML, PDF, and XML)
Thereof 767 with geography defined
and 111 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
14 citations as recorded by crossref.
- Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers S. Kristoffersen et al. 10.5194/amt-17-3995-2024
- Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign F. Vargas et al. 10.5194/acp-21-13631-2021
- High‐Cadence Lidar Observations of Middle Atmospheric Temperature and Gravity Waves at the Southern Andes Hot Spot R. Reichert et al. 10.1029/2021JD034683
- Observations of Gravity Wave Refraction and Its Causes and Consequences M. Geldenhuys et al. 10.1029/2022JD036830
- A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere B. Kaifler & N. Kaifler 10.5194/amt-14-1715-2021
- Turbulence Analysis in Long‐Range‐Transported Saharan Dust Layers With Airborne Lidar M. Gutleben & S. Groß 10.1029/2021GL094418
- Case Study of a Mesospheric Temperature Inversion over Maïdo Observatory through a Multi-Instrumental Observation F. Chane Ming et al. 10.3390/rs15082045
- Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina N. Kaifler et al. 10.1038/s41598-020-71443-7
- Atmospheric Gravity Wave Derived from the Neutral Wind with 5-Minute Resolution Routinely Retrieved by the Meteor Radar at Mohe C. Long et al. 10.3390/rs15020296
- Can We Improve the Realism of Gravity Wave Parameterizations by Imposing Sources at All Altitudes in the Atmosphere? B. Ribstein et al. 10.1029/2021MS002563
- The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities M. Gerding et al. 10.5194/amt-17-2789-2024
- Improved method of estimating temperatures at meteor peak heights E. Sarkar et al. 10.5194/amt-14-4157-2021
- Modified Parameterization Scheme of Orographic Gravity Waves in the SOCOL Chemistry-Climate Model A. Koval et al. 10.1007/s00024-024-03619-5
- Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves B. Witschas et al. 10.5194/amt-16-1087-2023
14 citations as recorded by crossref.
- Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers S. Kristoffersen et al. 10.5194/amt-17-3995-2024
- Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign F. Vargas et al. 10.5194/acp-21-13631-2021
- High‐Cadence Lidar Observations of Middle Atmospheric Temperature and Gravity Waves at the Southern Andes Hot Spot R. Reichert et al. 10.1029/2021JD034683
- Observations of Gravity Wave Refraction and Its Causes and Consequences M. Geldenhuys et al. 10.1029/2022JD036830
- A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere B. Kaifler & N. Kaifler 10.5194/amt-14-1715-2021
- Turbulence Analysis in Long‐Range‐Transported Saharan Dust Layers With Airborne Lidar M. Gutleben & S. Groß 10.1029/2021GL094418
- Case Study of a Mesospheric Temperature Inversion over Maïdo Observatory through a Multi-Instrumental Observation F. Chane Ming et al. 10.3390/rs15082045
- Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina N. Kaifler et al. 10.1038/s41598-020-71443-7
- Atmospheric Gravity Wave Derived from the Neutral Wind with 5-Minute Resolution Routinely Retrieved by the Meteor Radar at Mohe C. Long et al. 10.3390/rs15020296
- Can We Improve the Realism of Gravity Wave Parameterizations by Imposing Sources at All Altitudes in the Atmosphere? B. Ribstein et al. 10.1029/2021MS002563
- The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities M. Gerding et al. 10.5194/amt-17-2789-2024
- Improved method of estimating temperatures at meteor peak heights E. Sarkar et al. 10.5194/amt-14-4157-2021
- Modified Parameterization Scheme of Orographic Gravity Waves in the SOCOL Chemistry-Climate Model A. Koval et al. 10.1007/s00024-024-03619-5
- Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves B. Witschas et al. 10.5194/amt-16-1087-2023
Latest update: 06 Jan 2025
Short summary
To determine gravity wave properties like wavelengths, periods and propagation directions at mesospheric altitudes (∼ 86 km) we combine lidar and airglow temperature and meteor radar wind data. By means of wavelet transformation we investigate the wave field and determine intrinsic wave properties as functions of time and period. We are able to identify several gravity wave packets by their distinct propagation and discover a superposition with possible wave–wave and wave–mean-flow interaction.
To determine gravity wave properties like wavelengths, periods and propagation directions at...