Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 11
Atmos. Meas. Tech., 12, 5997–6015, 2019
https://doi.org/10.5194/amt-12-5997-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 5997–6015, 2019
https://doi.org/10.5194/amt-12-5997-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 19 Nov 2019

Research article | 19 Nov 2019

Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data

Robert Reichert et al.

Related authors

Resolving ambiguous direction of arrival of weak meteor radar trail echoes
Daniel Kastinen, Johan Kero, Alexander Kozlovsky, and Mark Lester
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-220,https://doi.org/10.5194/amt-2020-220, 2020
Preprint under review for AMT
Short summary
Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions
Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Kenneth C. Aikin, Teresa Campos, Hannah Clark, Róisín Commane, Bruce Daube, Glenn W. Diskin, James W. Elkins, Ru-Shan Gao, Audrey Gaudel, Eric J. Hintsa, Bryan J. Johnson, Rigel Kivi, Kathryn McKain, Fred L. Moore, David D. Parrish, Richard Querel, Eric Ray, Ricardo Sánchez, Colm Sweeney, David W. Tarasick, Anne M. Thompson, Valérie Thouret, Jacquelyn C. Witte, Steve C. Wofsy, and Thomas B. Ryerson
Atmos. Chem. Phys., 20, 10611–10635, https://doi.org/10.5194/acp-20-10611-2020,https://doi.org/10.5194/acp-20-10611-2020, 2020
Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2, CH4, and CO
Mahesh Kumar Sha, Martine De Mazière, Justus Notholt, Thomas Blumenstock, Huilin Chen, Angelika Dehn, David W. T. Griffith, Frank Hase, Pauli Heikkinen, Christian Hermans, Alex Hoffmann, Marko Huebner, Nicholas Jones, Rigel Kivi, Bavo Langerock, Christof Petri, Francis Scolas, Qiansi Tu, and Damien Weidmann
Atmos. Meas. Tech., 13, 4791–4839, https://doi.org/10.5194/amt-13-4791-2020,https://doi.org/10.5194/amt-13-4791-2020, 2020
Short summary
Intercomparison of atmospheric CO2 and CH4 abundances on regional scales in boreal areas using Copernicus Atmosphere Monitoring Service (CAMS) analysis, COllaborative Carbon Column Observing Network (COCCON) spectrometers, and Sentinel-5 Precursor satellite observations
Qiansi Tu, Frank Hase, Thomas Blumenstock, Rigel Kivi, Pauli Heikkinen, Mahesh Kumar Sha, Uwe Raffalski, Jochen Landgraf, Alba Lorente, Tobias Borsdorff, Huilin Chen, Florian Dietrich, and Jia Chen
Atmos. Meas. Tech., 13, 4751–4771, https://doi.org/10.5194/amt-13-4751-2020,https://doi.org/10.5194/amt-13-4751-2020, 2020
Short summary
Characterisation and potential for reducing optical resonances in FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC)
Thomas Blumenstock, Frank Hase, Axel Keens, Denis Czurlok, Orfeo Colebatch, Omaira Garcia, David W. T. Griffith, Michel Grutter, James W. Hannigan, Pauli Heikkinen, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Erik Lutsch, Maria Makarova, Hamud Kh. Imhasin, Johan Mellqvist, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Uwe Raffalski, Markus Rettinger, John Robinson, Matthias Schneider, Christian Servais, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Voltaire A. Velazco
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-316,https://doi.org/10.5194/amt-2020-316, 2020
Preprint under review for AMT
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Removing spurious inertial instability signals from gravity wave temperature perturbations using spectral filtering methods
Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 13, 4927–4945, https://doi.org/10.5194/amt-13-4927-2020,https://doi.org/10.5194/amt-13-4927-2020, 2020
Short summary
Improved SIFTER v2 algorithm for long-term GOME-2A satellite retrievals of fluorescence with a correction for instrument degradation
Erik van Schaik, Maurits L. Kooreman, Piet Stammes, L. Gijsbert Tilstra, Olaf N. E. Tuinder, Abram F. J. Sanders, Willem W. Verstraeten, Rüdiger Lang, Alessandra Cacciari, Joanna Joiner, Wouter Peters, and K. Folkert Boersma
Atmos. Meas. Tech., 13, 4295–4315, https://doi.org/10.5194/amt-13-4295-2020,https://doi.org/10.5194/amt-13-4295-2020, 2020
Short summary
Towards improved turbulence estimation with Doppler wind lidar velocity-azimuth display (VAD) scans
Norman Wildmann, Eileen Päschke, Anke Roiger, and Christian Mallaun
Atmos. Meas. Tech., 13, 4141–4158, https://doi.org/10.5194/amt-13-4141-2020,https://doi.org/10.5194/amt-13-4141-2020, 2020
Optimised degradation correction for SCIAMACHY satellite solar measurements from 330 to 1600 nm by using the internal white light source
Tina Hilbig, Klaus Bramstedt, Mark Weber, John P. Burrows, and Matthijs Krijger
Atmos. Meas. Tech., 13, 3893–3907, https://doi.org/10.5194/amt-13-3893-2020,https://doi.org/10.5194/amt-13-3893-2020, 2020
Short summary
Rain event detection in commercial microwave link attenuation data using convolutional neural networks
Julius Polz, Christian Chwala, Maximilian Graf, and Harald Kunstmann
Atmos. Meas. Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020,https://doi.org/10.5194/amt-13-3835-2020, 2020
Short summary

Cited articles

Alexander, M.: Interpretations of observed climatological patterns in stratospheric gravity wave variance, J. Geophys. Res.-Atmos., 103, 8627–8640, 1998. a
Alexander, M. J. and Barnet, C.: Using Satellite Observations to Constrain Parameterizations of Gravity Wave Effects for Global Models, J. Atmos. Sci., 64, 1652–1665, https://doi.org/10.1175/JAS3897.1, 2007. a
Alexander, S. P., Klekociuk, A. R., and Murphy, D. J.: Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69 S, 78 E), J. Geophys. Res.-Atmos., 116, D13, https://doi.org/10.1029/2010JD015164, 2011. a
Baker, D. J. and Stair Jr, A.: Rocket measurements of the altitude distributions of the hydroxyl airglow, Physica Scripta, 37, 611–622, https://doi.org/10.1088/0031-8949/37/4/021, 1988. a
Baumgarten, G., Fiedler, J., Hildebrand, J., and Lübken, F.-J.: Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar, Geophys. Res. Lett., 42, 10929–10936, https://doi.org/10.1002/2015GL066991, 2015. a
Publications Copernicus
Download
Short summary
To determine gravity wave properties like wavelengths, periods and propagation directions at mesospheric altitudes (∼ 86 km) we combine lidar and airglow temperature and meteor radar wind data. By means of wavelet transformation we investigate the wave field and determine intrinsic wave properties as functions of time and period. We are able to identify several gravity wave packets by their distinct propagation and discover a superposition with possible wave–wave and wave–mean-flow interaction.
To determine gravity wave properties like wavelengths, periods and propagation directions at...
Citation