Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 2
Atmos. Meas. Tech., 12, 935–953, 2019
https://doi.org/10.5194/amt-12-935-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 935–953, 2019
https://doi.org/10.5194/amt-12-935-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Feb 2019

Research article | 12 Feb 2019

Improving the mean and uncertainty of ultraviolet multi-filter rotating shadowband radiometer in situ calibration factors: utilizing Gaussian process regression with a new method to estimate dynamic input uncertainty

Maosi Chen et al.

Viewed

Total article views: 1,351 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,042 294 15 1,351 20 23
  • HTML: 1,042
  • PDF: 294
  • XML: 15
  • Total: 1,351
  • BibTeX: 20
  • EndNote: 23
Views and downloads (calculated since 15 Nov 2018)
Cumulative views and downloads (calculated since 15 Nov 2018)

Viewed (geographical distribution)

Total article views: 1,127 (including HTML, PDF, and XML) Thereof 1,123 with geography defined and 4 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved (final revised paper)

No saved metrics found.

Saved (preprint)

No saved metrics found.

Discussed (final revised paper)

No discussed metrics found.

Discussed (preprint)

No discussed metrics found.
Latest update: 20 Oct 2020
Publications Copernicus
Download
Short summary
Combining a new dynamic uncertainty estimation method with Gaussian process regression (GP), we provide a generic and robust solution to estimate the underlying mean and uncertainty functions of time series with variable mean, noise, sampling density, and length of gaps. The GP solution was applied and validated on three UV-MFRSR Vo time series at three ground sites with improved accuracy of the smoothed time series in terms of aerosol optical depth compared with two other smoothing methods.
Combining a new dynamic uncertainty estimation method with Gaussian process regression (GP), we...
Citation