Articles | Volume 12, issue 2
https://doi.org/10.5194/amt-12-935-2019
https://doi.org/10.5194/amt-12-935-2019
Research article
 | 
12 Feb 2019
Research article |  | 12 Feb 2019

Improving the mean and uncertainty of ultraviolet multi-filter rotating shadowband radiometer in situ calibration factors: utilizing Gaussian process regression with a new method to estimate dynamic input uncertainty

Maosi Chen, Zhibin Sun, John M. Davis, Yan-An Liu, Chelsea A. Corr, and Wei Gao

Related authors

Evaluation of simulated cloud liquid water in low clouds over the Beaufort Sea in the Arctic System Reanalysis using ARISE airborne in situ observations
J. Brant Dodson, Patrick C. Taylor, Richard H. Moore, David H. Bromwich, Keith M. Hines, Kenneth L. Thornhill, Chelsea A. Corr, Bruce E. Anderson, Edward L. Winstead, and Joseph R. Bennett
Atmos. Chem. Phys., 21, 11563–11580, https://doi.org/10.5194/acp-21-11563-2021,https://doi.org/10.5194/acp-21-11563-2021, 2021
Short summary
Fine particle pH and sensitivity to NH3 and HNO3 over summertime South Korea during KORUS-AQ
Ifayoyinsola Ibikunle, Andreas Beyersdorf, Pedro Campuzano-Jost, Chelsea Corr, John D. Crounse, Jack Dibb, Glenn Diskin, Greg Huey, Jose-Luis Jimenez, Michelle J. Kim, Benjamin A. Nault, Eric Scheuer, Alex Teng, Paul O. Wennberg, Bruce Anderson, James Crawford, Rodney Weber, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-501,https://doi.org/10.5194/acp-2020-501, 2020
Publication in ACP not foreseen
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Number- and size-controlled rainfall regimes in the Netherlands: physical reality or statistical mirage?
Marc Schleiss
Atmos. Meas. Tech., 17, 4789–4802, https://doi.org/10.5194/amt-17-4789-2024,https://doi.org/10.5194/amt-17-4789-2024, 2024
Short summary
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 2: First measurements of the emissivity of water in the far-infrared
Laura Warwick, Jonathan E. Murray, and Helen Brindley
Atmos. Meas. Tech., 17, 4777–4787, https://doi.org/10.5194/amt-17-4777-2024,https://doi.org/10.5194/amt-17-4777-2024, 2024
Short summary
Hailstorm events in the Central Andes of Peru: insights from historical data and radar microphysics
Jairo M. Valdivia, José Luis Flores-Rojas, Josep J. Prado, David Guizado, Elver Villalobos-Puma, Stephany Callañaupa, and Yamina Silva-Vidal
Atmos. Meas. Tech., 17, 2295–2316, https://doi.org/10.5194/amt-17-2295-2024,https://doi.org/10.5194/amt-17-2295-2024, 2024
Short summary
Hybrid instrument network optimization for air quality monitoring
Nishant Ajnoti, Hemant Gehlot, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 17, 1651–1664, https://doi.org/10.5194/amt-17-1651-2024,https://doi.org/10.5194/amt-17-1651-2024, 2024
Short summary
Role of time-averaging of eddy covariance fluxes on water use efficiency dynamics of Maize crop
Arun Rao Karimindla, Shweta Kumari, Saipriya SR, Syam Chintala, and BVN Phanindra Kambhammettu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-253,https://doi.org/10.5194/amt-2023-253, 2024
Revised manuscript accepted for AMT
Short summary

Cited articles

Alexandrov, M. D., Lacis, A. A., Carlson, B. E., and Cairns, B.: Remote Sensing of Atmospheric Aerosols and Trace Gases by Means of Multifilter Rotating Shadowband Radiometer. Part I: Retrieval Algorithm, J. Atmos. Sci., 59, 524–543, https://doi.org/10.1175/1520-0469(2002)059<0524:Rsoaaa>2.0.Co;2, 2002. 
Alexandrov, M. D., Marshak, A., Cairns, B., Lacis, A. A., and Carlson, B. E.: Automated cloud screening algorithm for MFRSR data, Geophys. Res. Lett., 31, L04118, https://doi.org/10.1029/2003GL019105, 2004. 
Alexandrov, M. D., Kiedron, P., Michalsky, J. J., Hodges, G., Flynn, C. J., and Lacis, A. A.: Optical depth measurements by shadow-band radiometers and their uncertainties, Appl. Opt., 46, 8027–8038, https://doi.org/10.1364/AO.46.008027, 2007. 
Alexandrov, M. D., Lacis, A. A., Carlson, B. E., and Cairns, B.: Characterization of atmospheric aerosols using MFRSR measurements, J. Geophys. Res.-Atmos., 113, D08204, https://doi.org/10.1029/2007JD009388, 2008. 
Augustine, J. A., Cornwall, C. R., Hodges, G. B., Long, C. N., Medina, C. I., and DeLuisi, J. J.: An Automated Method of MFRSR Calibration for Aerosol Optical Depth Analysis with Application to an Asian Dust Outbreak over the United States, J. Appl. Meteorol. Clim., 42, 266–278, https://doi.org/10.1175/1520-0450(2003)042<0266:Aamomc>2.0.Co;2, 2003. 
Download
Short summary
Combining a new dynamic uncertainty estimation method with Gaussian process regression (GP), we provide a generic and robust solution to estimate the underlying mean and uncertainty functions of time series with variable mean, noise, sampling density, and length of gaps. The GP solution was applied and validated on three UV-MFRSR Vo time series at three ground sites with improved accuracy of the smoothed time series in terms of aerosol optical depth compared with two other smoothing methods.