Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 4
Atmos. Meas. Tech., 13, 1735–1756, 2020
https://doi.org/10.5194/amt-13-1735-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 1735–1756, 2020
https://doi.org/10.5194/amt-13-1735-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Apr 2020

Research article | 07 Apr 2020

Discrete-wavelength DOAS NO2 slant column retrievals from OMI and TROPOMI

Cristina Ruiz Villena et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Cristina Ruiz Villena on behalf of the Authors (17 Jan 2020)  Author's response    Manuscript
ED: Referee Nomination & Report Request started (21 Jan 2020) by Andreas Richter
RR by Anonymous Referee #1 (03 Feb 2020)
RR by Anonymous Referee #2 (20 Feb 2020)
ED: Publish subject to minor revisions (review by editor) (24 Feb 2020) by Andreas Richter
AR by Cristina Ruiz Villena on behalf of the Authors (05 Mar 2020)  Author's response    Manuscript
ED: Publish as is (09 Mar 2020) by Andreas Richter
Publications Copernicus
Download
Short summary
We present a new method to derive NO2 concentrations from satellite observations that uses up to 30 times less spectral information than traditional methods. We tested the method using data from existing instruments OMI and TROPOMI and found our results agree with the reference data to 5 % and 11 %, respectively. Our method could allow for simpler instrument designs that can be used in low-cost constellations of small satellites for air quality monitoring at high spatial and temporal resolution.
We present a new method to derive NO2 concentrations from satellite observations that uses up to...
Citation