Articles | Volume 13, issue 4
https://doi.org/10.5194/amt-13-1735-2020
https://doi.org/10.5194/amt-13-1735-2020
Research article
 | 
07 Apr 2020
Research article |  | 07 Apr 2020

Discrete-wavelength DOAS NO2 slant column retrievals from OMI and TROPOMI

Cristina Ruiz Villena, Jasdeep S. Anand, Roland J. Leigh, Paul S. Monks, Claire E. Parfitt, and Joshua D. Vande Hey

Related authors

Using a deep neural network to detect methane point sources and quantify emissions from PRISMA hyperspectral satellite images
Peter Joyce, Cristina Ruiz Villena, Yahui Huang, Alex Webb, Manuel Gloor, Fabien H. Wagner, Martyn P. Chipperfield, Rocío Barrio Guilló, Chris Wilson, and Hartmut Boesch
Atmos. Meas. Tech., 16, 2627–2640, https://doi.org/10.5194/amt-16-2627-2023,https://doi.org/10.5194/amt-16-2627-2023, 2023
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Estimation of biogenic volatile organic compound (BVOC) emissions in forest ecosystems using drone-based lidar, photogrammetry, and image recognition technologies
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024,https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Fast retrieval of XCO2 over east Asia based on Orbiting Carbon Observatory-2 (OCO-2) spectral measurements
Fengxin Xie, Tao Ren, Changying Zhao, Yuan Wen, Yilei Gu, Minqiang Zhou, Pucai Wang, Kei Shiomi, and Isamu Morino
Atmos. Meas. Tech., 17, 3949–3967, https://doi.org/10.5194/amt-17-3949-2024,https://doi.org/10.5194/amt-17-3949-2024, 2024
Short summary
A new method for estimating megacity NOx emissions and lifetimes from satellite observations
Steffen Beirle and Thomas Wagner
Atmos. Meas. Tech., 17, 3439–3453, https://doi.org/10.5194/amt-17-3439-2024,https://doi.org/10.5194/amt-17-3439-2024, 2024
Short summary
Accounting for the effect of aerosols in GHGSat methane retrieval
Qiurun Yu, Dylan Jervis, and Yi Huang
Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024,https://doi.org/10.5194/amt-17-3347-2024, 2024
Short summary
Tropospheric NO2 retrieval algorithm for geostationary satellite instruments: applications to GEMS
Sora Seo, Pieter Valks, Ronny Lutz, Klaus-Peter Heue, Pascal Hedelt, Diego Loyola, Hanlim Lee, and Jhoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2024-1137,https://doi.org/10.5194/egusphere-2024-1137, 2024
Short summary

Cited articles

Alvarado, L. M. A., Richter, A., Vrekoussis, M., Wittrock, F., Hilboll, A., Schreier, S. F., and Burrows, J. P.: An improved glyoxal retrieval from OMI measurements, Atmos. Meas. Tech., 7, 4133–4150, https://doi.org/10.5194/amt-7-4133-2014, 2014. a
Anand, J. S., Monks, P. S., and Leigh, R. J.: An improved retrieval of tropospheric NO2 from space over polluted regions using an Earth radiance reference, Atmos. Meas. Tech., 8, 1519–1535, https://doi.org/10.5194/amt-8-1519-2015, 2015. a
Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., and Bucsela, E. J.: Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118, https://doi.org/10.5194/acp-7-2103-2007, 2007. a
Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928, https://doi.org/10.5194/amt-4-1905-2011, 2011. a, b
Boersma, K. F., Eskes, H., Richter, A., Smedt, I. D., Lorente, A., Beirle, S., van Geffen, J., Peters, E., Roozendael, M. V., and Wagner, T.: QA4ECV NO2 tropospheric and stratospheric column data from OMI [Dataset], https://doi.org/10.21944/qa4ecv-no2-omi-v1.1, 2017. a
Download
Short summary
We present a new method to derive NO2 concentrations from satellite observations that uses up to 30 times less spectral information than traditional methods. We tested the method using data from existing instruments OMI and TROPOMI and found our results agree with the reference data to 5 % and 11 %, respectively. Our method could allow for simpler instrument designs that can be used in low-cost constellations of small satellites for air quality monitoring at high spatial and temporal resolution.