Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 5
Atmos. Meas. Tech., 13, 2219–2239, 2020
https://doi.org/10.5194/amt-13-2219-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 2219–2239, 2020
https://doi.org/10.5194/amt-13-2219-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 08 May 2020

Research article | 08 May 2020

A convolutional neural network for classifying cloud particles recorded by imaging probes

Georgios Touloupas et al.

Data sets

A Convolutional Neural Network for Classifying Cloud Particles Recorded by Imaging Probes A. Lauber and G. Touloupas https://doi.org/10.5281/zenodo.3715984

Publications Copernicus
Download
Short summary
Images of cloud particles give important information for improving our understanding of microphysical cloud processes. For phase-resolved measurements, a large number of water droplets and ice crystals need to be classified by an automated approach. In this study, a convolutional neural network was designed, which exceeds the classification ability of traditional methods and therefore shortens the analysis procedure of cloud particle images.
Images of cloud particles give important information for improving our understanding of...
Citation