Articles | Volume 13, issue 5
https://doi.org/10.5194/amt-13-2219-2020
https://doi.org/10.5194/amt-13-2219-2020
Research article
 | 
08 May 2020
Research article |  | 08 May 2020

A convolutional neural network for classifying cloud particles recorded by imaging probes

Georgios Touloupas, Annika Lauber, Jan Henneberger, Alexander Beck, and Aurélien Lucchi

Viewed

Total article views: 4,315 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,935 1,270 110 4,315 96 90
  • HTML: 2,935
  • PDF: 1,270
  • XML: 110
  • Total: 4,315
  • BibTeX: 96
  • EndNote: 90
Views and downloads (calculated since 15 Jul 2019)
Cumulative views and downloads (calculated since 15 Jul 2019)

Viewed (geographical distribution)

Total article views: 4,315 (including HTML, PDF, and XML) Thereof 3,907 with geography defined and 408 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 30 Mar 2025
Download
Short summary
Images of cloud particles give important information for improving our understanding of microphysical cloud processes. For phase-resolved measurements, a large number of water droplets and ice crystals need to be classified by an automated approach. In this study, a convolutional neural network was designed, which exceeds the classification ability of traditional methods and therefore shortens the analysis procedure of cloud particle images.
Share