Articles | Volume 13, issue 5
Atmos. Meas. Tech., 13, 2219–2239, 2020
https://doi.org/10.5194/amt-13-2219-2020
Atmos. Meas. Tech., 13, 2219–2239, 2020
https://doi.org/10.5194/amt-13-2219-2020
Research article
08 May 2020
Research article | 08 May 2020

A convolutional neural network for classifying cloud particles recorded by imaging probes

Georgios Touloupas et al.

Related authors

Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022,https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Conditions favorable for secondary ice production in Arctic mixed-phase clouds
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-314,https://doi.org/10.5194/acp-2022-314, 2022
Preprint under review for ACP
Short summary
Unveiling atmospheric transport and mixing mechanisms of ice-nucleating particles over the Alps
Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 3111–3130, https://doi.org/10.5194/acp-22-3111-2022,https://doi.org/10.5194/acp-22-3111-2022, 2022
Short summary
Predicting atmospheric background number concentration of ice nucleating particles in the Arctic
Guangyu Li, Jörg Wieder, Julie T. Pasquier, Jan Henneberger, and Zamin A. Kanji
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-21,https://doi.org/10.5194/acp-2022-21, 2022
Preprint under review for ACP
Short summary
Sensitivity of precipitation formation to secondary ice production in winter orographic mixed-phase clouds
Zane Dedekind, Annika Lauber, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 15115–15134, https://doi.org/10.5194/acp-21-15115-2021,https://doi.org/10.5194/acp-21-15115-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Ice crystals images from Optical Array Probes: classification with Convolutional Neural Networks
Louis Jaffeux, Alfons Schwarzenböck, Pierre Coutris, and Christophe Duroure
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-72,https://doi.org/10.5194/amt-2022-72, 2022
Revised manuscript accepted for AMT
Short summary
The University of Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning
Rachel Atlas, Johannes Mohrmann, Joseph Finlon, Jeremy Lu, Ian Hsiao, Robert Wood, and Minghui Diao
Atmos. Meas. Tech., 14, 7079–7101, https://doi.org/10.5194/amt-14-7079-2021,https://doi.org/10.5194/amt-14-7079-2021, 2021
Short summary
Twenty-four-hour cloud cover calculation using a ground-based imager with machine learning
Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang
Atmos. Meas. Tech., 14, 6695–6710, https://doi.org/10.5194/amt-14-6695-2021,https://doi.org/10.5194/amt-14-6695-2021, 2021
Short summary
Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region
Jun Inoue, Yutaka Tobo, Kazutoshi Sato, Fumikazu Taketani, and Marion Maturilli
Atmos. Meas. Tech., 14, 4971–4987, https://doi.org/10.5194/amt-14-4971-2021,https://doi.org/10.5194/amt-14-4971-2021, 2021
Short summary
Clouds over Hyytiälä, Finland: an algorithm to classify clouds based on solar radiation and cloud base height measurements
Ilona Ylivinkka, Santeri Kaupinmäki, Meri Virman, Maija Peltola, Ditte Taipale, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Ekaterina Ezhova
Atmos. Meas. Tech., 13, 5595–5619, https://doi.org/10.5194/amt-13-5595-2020,https://doi.org/10.5194/amt-13-5595-2020, 2020
Short summary

Cited articles

Abdelmonem, A., Schnaiter, M., Amsler, P., Hesse, E., Meyer, J., and Leisner, T.: First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe, Atmos. Meas. Tech., 4, 2125–2142, https://doi.org/10.5194/amt-4-2125-2011, 2011. a
Abdelmonem, A., Järvinen, E., Duft, D., Hirst, E., Vogt, S., Leisner, T., and Schnaiter, M.: PHIPS–HALO: the airborne Particle Habit Imaging and Polar Scattering probe – Part 1: Design and operation, Atmos. Meas. Tech., 9, 3131–3144, https://doi.org/10.5194/amt-9-3131-2016, 2016. a
Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations, Atmos. Res., 59–60, 251–264, https://doi.org/10.1016/S0169-8095(01)00119-3, 2001. a, b
Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice Properties: In Situ Measurement Challenges, Meteor. Mon., 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017. a, b, c, d
Beck, A.: Observing the Microstructure of Orographic Clouds with HoloGondel, PhD thesis, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000250847, 2017. a
Download
Short summary
Images of cloud particles give important information for improving our understanding of microphysical cloud processes. For phase-resolved measurements, a large number of water droplets and ice crystals need to be classified by an automated approach. In this study, a convolutional neural network was designed, which exceeds the classification ability of traditional methods and therefore shortens the analysis procedure of cloud particle images.