Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 5
Atmos. Meas. Tech., 13, 2257–2277, 2020
https://doi.org/10.5194/amt-13-2257-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 2257–2277, 2020
https://doi.org/10.5194/amt-13-2257-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 11 May 2020

Research article | 11 May 2020

A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations

Chenxi Wang et al.

Data sets

MODIS/Aqua Clouds 5-Min L2 Swath 1km and 5km S. Platnick, M. King, G. Wind, S. Ackerman, P. Menzel, and R. Frey https://doi.org/10.5067/MODIS/MYD06_L2.061

MYD35_L2 - MODIS/Aqua Cloud Mask and Spectral Test Results 5-Min L2 Swath 250 m and 1 km S. Ackerman, P. Menzel, R. Frey, and B. Baum https://doi.org/10.5067/MODIS/MYD35_L2.061

Continuity MODIS/Aqua Level-2 (L2) Cloud Mask Product S. Ackerman and R. Frey https://doi.org/10.5067/MODIS/CLDMSK_L2_MODIS_Aqua.001

Continuity VIIRS/SNPP Level-2 (L2) Cloud Mask Product S. Ackerman and R. Frey https://doi.org/10.5067/VIIRS/CLDMSK_L2_VIIRS_SNPP.001

Continuity MODIS/Aqua Level-2 (L2) Cloud Properties Product S. Platnick, K. Meyer, G. Wind, T. Arnold, N. Amrasinghe, B. Marchant, C. Wang, S. Ackerman, A. Heidinger, B. Holtz, Y. Li, and R. Frey https://doi.org/10.5067/MODIS/CLDPROP_L2_MODIS_Aqua.011

Continuity VIIRS/SNPP Level-2 (L2) Cloud Properties Product S. Platnick, K. Meyer, G. Wind, T. Arnold, N. Amrasinghe, B. Marchant, C. Wang, S. Ackerman, A. Heidinger, B. Holtz, Y. Li, and R. Frey https://doi.org/10.5067/VIIRS/CLDPROP_L2_VIIRS_SNPP.011

Publications Copernicus
Download
Short summary
A machine-learning (ML)-based approach that can be used for cloud mask and phase detection is developed. An all-day model that uses infrared (IR) observations and a daytime model that uses shortwave and IR observations from a passive instrument are trained separately for different surface types. The training datasets are selected by using reference pixel types from collocated space lidar. The ML approach is validated carefully and the overall performance is better than traditional methods.
A machine-learning (ML)-based approach that can be used for cloud mask and phase detection is...
Citation