Articles | Volume 13, issue 5
Atmos. Meas. Tech., 13, 2257–2277, 2020
https://doi.org/10.5194/amt-13-2257-2020
Atmos. Meas. Tech., 13, 2257–2277, 2020
https://doi.org/10.5194/amt-13-2257-2020

Research article 11 May 2020

Research article | 11 May 2020

A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations

Chenxi Wang et al.

Related authors

Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic
Sarah J. Doherty, Pablo E. Saide, Paquita Zuidema, Yohei Shinozuka, Gonzalo A. Ferrada, Hamish Gordon, Marc Mallet, Kerry Meyer, David Painemal, Steven G. Howell, Steffen Freitag, Amie Dobracki, James R. Podolske, Sharon P. Burton, Richard A. Ferrare, Calvin Howes, Pierre Nabat, Gregory R. Carmichael, Arlindo da Silva, Kristina Pistone, Ian Chang, Lan Gao, Robert Wood, and Jens Redemann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-333,https://doi.org/10.5194/acp-2021-333, 2021
Preprint under review for ACP
Short summary
Observation of absorbing aerosols above clouds over the south-east Atlantic Ocean from the geostationary satellite SEVIRI – Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021,https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Observation and modeling of a historic African dust intrusion into the Caribbean Basin and the southern U.S. in June 2020
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-73,https://doi.org/10.5194/acp-2021-73, 2021
Preprint under review for ACP
Short summary
Vertical dependence of horizontal variation of cloud microphysics: observations from the ACE-ENA field campaign and implications for warm-rain simulation in climate models
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021,https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Global Dust Optical Depth Climatology Derived from CALIOP and MODIS Aerosol Retrievals on Decadal Time Scales: Regional and Interannual Variability
Qianqian Song, Zhibo Zhang, Hongbin Yu, Paul Ginoux, and Jerry Shen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1,https://doi.org/10.5194/acp-2021-1, 2021
Preprint under review for ACP

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part II: Results over oceans
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3277–3299, https://doi.org/10.5194/amt-14-3277-2021,https://doi.org/10.5194/amt-14-3277-2021, 2021
Short summary
Version 4 CALIPSO Imaging Infrared Radiometer ice and liquid water cloud microphysical properties – Part I: The retrieval algorithms
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021,https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Observation of cirrus clouds with GLORIA during the WISE campaign: detection methods and cirrus characterization
Irene Bartolome Garcia, Reinhold Spang, Jörn Ungermann, Sabine Griessbach, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 14, 3153–3168, https://doi.org/10.5194/amt-14-3153-2021,https://doi.org/10.5194/amt-14-3153-2021, 2021
Short summary
Applying machine learning methods to detect convection using Geostationary Operational Environmental Satellite-16 (GOES-16) advanced baseline imager (ABI) data
Yoonjin Lee, Christian D. Kummerow, and Imme Ebert-Uphoff
Atmos. Meas. Tech., 14, 2699–2716, https://doi.org/10.5194/amt-14-2699-2021,https://doi.org/10.5194/amt-14-2699-2021, 2021
Short summary
A new method to detect and classify polar stratospheric nitric acid trihydrate clouds derived from radiative transfer simulations and its first application to airborne infrared limb emission observations
Christoph Kalicinsky, Sabine Griessbach, and Reinhold Spang
Atmos. Meas. Tech., 14, 1893–1915, https://doi.org/10.5194/amt-14-1893-2021,https://doi.org/10.5194/amt-14-1893-2021, 2021
Short summary

Cited articles

Ackerman, S. and Frey, R.: Continuity MODIS/Aqua Level-2 (L2) Cloud Mask Product, https://doi.org/10.5067/MODIS/CLDMSK_L2_MODIS_Aqua.001, 2019a. 
Ackerman, S. and Frey, R.: Continuity VIIRS/SNPP Level-2 (L2) Cloud Mask Product, https://doi.org/10.5067/VIIRS/CLDMSK_L2_VIIRS_SNPP.001, 2019b. 
Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M.: Cloud detection with MODIS. Part II: Validation, J. Atmos. Ocean. Technol., 25, 1073–1086, https://doi.org/10.1175/2007JTECHA1053.1, 2008. 
Ackerman, S., Menzel, P., Frey, R., and Baum, B.: MODIS Atmosphere L2 Cloud Mask Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA, https://doi.org/10.5067/MODIS/MYD35_L2.061, 2017. 
Ackerman, S. A., Frey, R., Heidinger, A., Li, Y., Walther, A., Platnick, S., Meyer, K., Wind, G., Amarasinghe, N., Wang, C., Marchant, B., Holz, R. E., Dutcher, S., and Hubanks, P.: EOS MODIS and SNPP VIIRS Cloud Properties: User guide for climate data record continuity Level-2 cloud top and optical properties product (CLDPROP), version 1, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA, 2019. 
Download
Short summary
A machine-learning (ML)-based approach that can be used for cloud mask and phase detection is developed. An all-day model that uses infrared (IR) observations and a daytime model that uses shortwave and IR observations from a passive instrument are trained separately for different surface types. The training datasets are selected by using reference pixel types from collocated space lidar. The ML approach is validated carefully and the overall performance is better than traditional methods.