Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 6
Atmos. Meas. Tech., 13, 3119–3146, 2020
https://doi.org/10.5194/amt-13-3119-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 3119–3146, 2020
https://doi.org/10.5194/amt-13-3119-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 12 Jun 2020

Research article | 12 Jun 2020

Implementation of a chemical background method for atmospheric OH measurements by laser-induced fluorescence: characterisation and observations from the UK and China

Robert Woodward-Massey et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Dwayne Heard on behalf of the Authors (07 Apr 2020)  Author's response    Manuscript
ED: Publish subject to technical corrections (29 Apr 2020) by Anna Novelli
Publications Copernicus
Download
Short summary
The OH radical is known as nature’s detergent, removing most trace gases from the atmosphere. Hence, an accurate measurement of its concentration is very important. We present measurements of OH in several field locations using a laser-based fluorescence method equipped with an OH scavenger. By determining the background signal in two different ways, we show that the instrument does not suffer any significant interferences that could result in an overestimation of OH concentrations.
The OH radical is known as nature’s detergent, removing most trace gases from the atmosphere....
Citation