Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 13, issue 7
Atmos. Meas. Tech., 13, 3543–3560, 2020
https://doi.org/10.5194/amt-13-3543-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 13, 3543–3560, 2020
https://doi.org/10.5194/amt-13-3543-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 03 Jul 2020

Research article | 03 Jul 2020

Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes

Aku Helin et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna Wenzel on behalf of the Authors (08 Apr 2020)  Author's response
ED: Referee Nomination & Report Request started (09 Apr 2020) by Anna Novelli
RR by Anonymous Referee #2 (22 Apr 2020)
RR by Anonymous Referee #3 (29 May 2020)
ED: Publish subject to technical corrections (09 Jun 2020) by Anna Novelli
AR by Aku Helin on behalf of the Authors (11 Jun 2020)  Author's response    Manuscript
Publications Copernicus
Download
Short summary
A thermal desorption–gas chromatography–mass spectrometry method following sorbent tube sampling was developed for the determination of terpenes in gas-phase samples. The main focus was on the analysis of diterpenes, which have been limited in study in gas-phase samples. The analytical figures of merit were fit for purpose (e.g. quantitation limits <10 pptv and reproducibility <10 % for terpenes). Diterpenes could be detected and identified in emissions from spruce and pine samples.
A thermal desorption–gas chromatography–mass spectrometry method following sorbent tube sampling...
Citation