Articles | Volume 13, issue 11
https://doi.org/10.5194/amt-13-6141-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-6141-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Michel Van Roozendael
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
François Hendrick
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Nicolas Theys
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Nader Abuhassan
NASA/Goddard Space Flight Center, GSFC, Greenbelt, MD, USA
University of Maryland, Joint Center for Earth Systems Technology, Baltimore, MD, USA
Alkiviadis Bais
Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, AUTH, Thessaloniki, Greece
Folkert Boersma
Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands
Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands
Alexander Cede
NASA/Goddard Space Flight Center, GSFC, Greenbelt, MD, USA
LuftBlick, Innsbruck, Austria
Jihyo Chong
Gwangju Institute of Science and Technology GIST, Gwangju, South Korea
Sebastian Donner
Max Planck Institute for Chemistry, Mainz, Germany
Theano Drosoglou
Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, AUTH, Thessaloniki, Greece
Anatoly Dzhola
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, IAP/RAS, Moscow, Russia
Henk Eskes
Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands
Udo Frieß
Institut für Umweltphysik, Universität Heidelberg, Heidelberg, Germany
José Granville
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Jay R. Herman
NASA/Goddard Space Flight Center, GSFC, Greenbelt, MD, USA
University of Maryland, Joint Center for Earth Systems Technology, Baltimore, MD, USA
Robert Holla
German Weather Service, DWD, Hohenpeissenberg, Germany
Jari Hovila
Finnish Meteorological Institute, FMI, Helsinki, Finland
Hitoshi Irie
Center for Environmental Remote Sensing, Chiba University, Chiba, Japan
Yugo Kanaya
Research Institute for Global Change, JAMSTEC, Yokohama, Japan
Dimitris Karagkiozidis
Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, AUTH, Thessaloniki, Greece
Natalia Kouremeti
Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, AUTH, Thessaloniki, Greece
Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center (PMOD/WRC), Davos Dorf, Switzerland
Jean-Christopher Lambert
Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Brussels, Belgium
Jianzhong Ma
Chinese Academy of Meteorological Sciences, Beijing, China
Enno Peters
Institut für Umweltphysik, Universität Bremen, Bremen, Germany
Ankie Piters
Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands
Oleg Postylyakov
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, IAP/RAS, Moscow, Russia
Andreas Richter
Institut für Umweltphysik, Universität Bremen, Bremen, Germany
Julia Remmers
Max Planck Institute for Chemistry, Mainz, Germany
Hisahiro Takashima
Research Institute for Global Change, JAMSTEC, Yokohama, Japan
Faculty of Science, Fukuoka University, Fukuoka, Japan
Martin Tiefengraber
LuftBlick, Innsbruck, Austria
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Pieter Valks
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung (IMF), Oberpfaffenhofen, Germany
Tim Vlemmix
Royal Netherlands Meteorological Institute, KNMI, De Bilt, the Netherlands
Thomas Wagner
Max Planck Institute for Chemistry, Mainz, Germany
Folkard Wittrock
Institut für Umweltphysik, Universität Bremen, Bremen, Germany
Download
- Final revised paper (published on 18 Nov 2020)
- Supplement to the final revised paper
- Preprint (discussion started on 30 Mar 2020)
- Supplement to the preprint
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
- Printer-friendly version
- Supplement
-
RC1: 'Review_of_Pinardi_et_al_amt-2020-76', Anonymous Referee #1, 11 Jun 2020
- AC1: 'answer to RC1', Gaia Pinardi, 05 Sep 2020
-
RC2: 'Review of Pinardi et al 2020, amt-2020-76', Anonymous Referee #2, 01 Aug 2020
- AC2: 'answer to RC2', Gaia Pinardi, 05 Sep 2020
Peer-review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Gaia Pinardi on behalf of the Authors (05 Sep 2020)
Author's response
Manuscript
ED: Publish as is (26 Sep 2020) by Karin Kreher
AR by Gaia Pinardi on behalf of the Authors (28 Sep 2020)
Manuscript
Post-review adjustments
AA: Author's adjustment | EA: Editor approval
AA by Gaia Pinardi on behalf of the Authors (06 Nov 2020)
Author's adjustment
Manuscript
EA: Adjustments approved (16 Nov 2020) by Karin Kreher
Short summary
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun instruments distributed worldwide, highlighting large horizontal inhomogeneities at several sites affecting the validation results. We propose a method for quantification and correction. We show the application of such correction reduces the satellite underestimation in almost all heterogeneous cases, but a negative bias remains over the MAX-DOAS and direct sun network ensemble for both satellites.
We validate several GOME-2 and OMI tropospheric NO2 products with 23 MAX-DOAS and 16 direct sun...