Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6579-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-6579-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detecting turbulent structures on single Doppler lidar large datasets: an automated classification method for horizontal scans
Ioannis Cheliotis
CORRESPONDING AUTHOR
Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), UR 4493, Université du Littoral Côte d'Opale (ULCO), Dunkirk, France
Elsa Dieudonné
Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), UR 4493, Université du Littoral Côte d'Opale (ULCO), Dunkirk, France
Hervé Delbarre
Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), UR 4493, Université du Littoral Côte d'Opale (ULCO), Dunkirk, France
Anton Sokolov
Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), UR 4493, Université du Littoral Côte d'Opale (ULCO), Dunkirk, France
Egor Dmitriev
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
Patrick Augustin
Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), UR 4493, Université du Littoral Côte d'Opale (ULCO), Dunkirk, France
Marc Fourmentin
Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), UR 4493, Université du Littoral Côte d'Opale (ULCO), Dunkirk, France
Related authors
Ioannis Cheliotis, Thomas Lauvaux, Jinghui Lian, Theodoros Christoudias, George Georgiou, Alba Badia, Frédéric Chevallier, Pramod Kumar, Yathin Kudupaje, Ruixue Lei, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2023-2487, https://doi.org/10.5194/egusphere-2023-2487, 2023
Preprint withdrawn
Short summary
Short summary
A consistent estimation of CO2 emissions is complicated due to the scarcity of CO2 observations. In this study, we showcase the potential to improve the CO2 emissions estimations from the NO2 concentrations based on the NO2-to-CO2 ratio, which should be constant for a source co-emitting NO2 and CO2, by comparing satellite observations with atmospheric chemistry and transport model simulations for NO2 and CO2. Furthermore, we demonstrate the significance of the chemistry in NO2 simulations.
Pauline Haezebrouck, Elsa Dieudonné, Anton Sokolov, Hervé Delbarre, Patrick Augustin, and Marc Fourmentin
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-183, https://doi.org/10.5194/wes-2025-183, 2025
Preprint under review for WES
Short summary
Short summary
Low-level jets are wind maxima that frequently occur at wind turbine rotor heights. This work investigated their properties and their impact on wind turbines, using 3 years of wind measurements in Dunkerque, a coastal city of the North Sea. Results showed that jets are frequent (15 % of the time), could decrease current turbines' production and expose them to unfavorable structural conditions, while future turbines will be less impacted and will see an increase in energy production.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barret, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
Atmos. Chem. Phys., 25, 11789–11811, https://doi.org/10.5194/acp-25-11789-2025, https://doi.org/10.5194/acp-25-11789-2025, 2025
Short summary
Short summary
Fairbanks is among the most polluted cities, with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the submicron PM found residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulfur-containing aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites, with wide-ranging influences.
Antonio Donateo, Gianluca Pappaccogli, Federico Scoto, Maurizio Busetto, Francesca Lucia Lovisco, Natalie Brett, Douglas Keller, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Andrea Baccarini, Slimane Bekki, Jean-Christophe Raut, Julia Schmale, Kathy S. Law, Steve R. Arnold, Gilberto Javier Fochesatto, William R. Simpson, and Stefano Decesari
EGUsphere, https://doi.org/10.5194/egusphere-2025-1366, https://doi.org/10.5194/egusphere-2025-1366, 2025
Short summary
Short summary
A study in Fairbanks, Alaska, measured winter aerosol fluxes on snow. Both emission and deposition occurred, with larger particles settling faster. Weather influenced dispersion and deposition, while wind-driven turbulence enhanced deposition despite stable conditions. Results show aerosol accumulation in snow impacts pollution and snowmelt. Findings help improve aerosol models and pollution studies in cold cities.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
Atmos. Chem. Phys., 25, 3687–3715, https://doi.org/10.5194/acp-25-3687-2025, https://doi.org/10.5194/acp-25-3687-2025, 2025
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonné, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
Atmos. Chem. Phys., 25, 1063–1104, https://doi.org/10.5194/acp-25-1063-2025, https://doi.org/10.5194/acp-25-1063-2025, 2025
Short summary
Short summary
Processes influencing dispersion of local anthropogenic pollution in Arctic wintertime are investigated with Lagrangian dispersion modelling. Simulated power plant plume rise that considers temperature inversion layers improves results compared to observations (interior Alaska). Modelled surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching −35°C are required to reproduce observed NOx.
Ioannis Cheliotis, Thomas Lauvaux, Jinghui Lian, Theodoros Christoudias, George Georgiou, Alba Badia, Frédéric Chevallier, Pramod Kumar, Yathin Kudupaje, Ruixue Lei, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2023-2487, https://doi.org/10.5194/egusphere-2023-2487, 2023
Preprint withdrawn
Short summary
Short summary
A consistent estimation of CO2 emissions is complicated due to the scarcity of CO2 observations. In this study, we showcase the potential to improve the CO2 emissions estimations from the NO2 concentrations based on the NO2-to-CO2 ratio, which should be constant for a source co-emitting NO2 and CO2, by comparing satellite observations with atmospheric chemistry and transport model simulations for NO2 and CO2. Furthermore, we demonstrate the significance of the chemistry in NO2 simulations.
Patrick Chazette, Cyrille Flamant, Harald Sodemann, Julien Totems, Anne Monod, Elsa Dieudonné, Alexandre Baron, Andrew Seidl, Hans Christian Steen-Larsen, Pascal Doira, Amandine Durand, and Sylvain Ravier
Atmos. Chem. Phys., 21, 10911–10937, https://doi.org/10.5194/acp-21-10911-2021, https://doi.org/10.5194/acp-21-10911-2021, 2021
Short summary
Short summary
To gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link to the isotopic composition of the lake water and small-scale dynamics, the L-WAIVE field campaign was conducted in the Annecy valley in the French Alps in June 2019. Based on a synergy between ground-based, boat-borne, and airborne measuring platforms, significant gradients of isotopic content have been revealed at the transitions to the lake and to the free troposphere.
Cited articles
Adrian, R. J.:
Hairpin vortex organization in wall turbulence,
Phys. Fluids,
19, 41301, https://doi.org/10.1063/1.2717527, 2007.
Alparone, L., Benelli, G., and Vagniluca, A.:
Texture-based analysis techniques for the classification of radar images,
IET Digital Library,
IEE Proc. F,
137, 276–282, https://doi.org/10.1049/ip-f-2.1990.0041, 1990.
Aouizerats, B., Tulet, P., Pigeon, G., Masson, V., and Gomes, L.: High resolution modelling of aerosol dispersion regimes during the CAPITOUL field experiment: from regional to local scale interactions, Atmos. Chem. Phys., 11, 7547–7560, https://doi.org/10.5194/acp-11-7547-2011, 2011.
Banta, R. M., Newsom, R. K., Lundquist, J. K., Pichugina, Y. L., Coulter, R. L., and Mahrt, L.:
Nocturnal low-level jet characteristics over Kansas during cases-99,
Bound.-Lay. Meteorol.,
105, 221–252, https://doi.org/10.1023/A:1019992330866, 2002.
Barthlott, C., Drobinski, P., Fesquet, C., Dubos, T., and Pietras, C.:
Long-term study of coherent structures in the atmospheric surface layer,
Bound.-Lay. Meteorol.,
125, 1–24, https://doi.org/10.1007/s10546-007-9190-9, 2007.
Bonamente, M.:
Functions of random variables and error propagation,
in: Statistics and Analysis of Scientific Data, Grad. Texts Phys.,
Springer, New York, USA, 55–83, https://doi.org/10.1007/978-1-4939-6572-4, 2017.
Browning, K. A. and Wexler, R.:
The determination of kinematic properties of a wind field using Doppler radar,
J. Appl. Meteorol.,
7, 105–113, https://doi.org/10.1175/1520-0450(1968)007<0105:tdokpo>2.0.co;2, 1968.
Brümmer, B.:
Roll and cell convection in wintertime Arctic cold-air outbreaks,
J. Atmos. Sci.,
56, 2613–2636, https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2, 1999.
Cariou, J. P., Parmentier, R., Valla, M., Sauvage, L., Antoniou, I., and Courtney, M.:
An innovative and autonomous 1.5 µm Coherent lidar for PBL wind profiling,
in: Proceedings of the 14th Coherent Laser Radar Conference, Snowmass, Colorado, USA, 8–13 July 2007, 35–38, 2007.
Castellano, G., Bonilha, L., Li, L. M., and Cendes, F.:
Texture analysis of medical images,
Clin. Radiol.,
59, 1061–1069, https://doi.org/10.1016/j.crad.2004.07.008, 12, 2004.
Chai, T., Lin, C.-L., and Newsom, R. K.:
Retrieval of microscale flow structures from high-resolution Doppler lidar data using an adjoint model,
J. Atmos. Sci.,
13, 1500–1520, https://doi.org/10.1175/1520-0469(2004)061<1500:ROMFSF>2.0.CO;2, 2004.
Drobinski, P. and Foster, R. C.:
On the origin of near-surface streaks in the neutrally-stratified planetary boundary layer,
Bound.-Lay. Meteorol.,
108, 247–256, https://doi.org/10.1023/A:1024100125735, 2003.
Drobinski, P., Brown, R. A., Flamant, P. H., and Pelon, J.:
Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer and sodar,
Bound.-Lay. Meteorol.,
88, 343–361, https://doi.org/10.1023/A:1001167212584, 1998.
Drobinski, P., Carlotti, P., Newsom, R. K., Banta, R. M., Foster, R. C., and Redelsperger, J.-L.:
The structure of the near-neutral atmospheric surface layer,
J. Atmos. Sci.,
61, 699–714, https://doi.org/10.1175/1520-0469(2004)061<0699:TSOTNA>2.0.CO;2, 2004.
Eberhard, W. L., Cupp, R. E., and Healy, K. R.:
Doppler lidar measurement of profiles of turbulence and momentum flux,
J. Atmos. Ocean. Tech.,
6, 809–819, https://doi.org/10.1175/1520-0426(1989)006<0809:dlmopo>2.0.co;2, 1989.
Haralick, R. M., Dinstein, I., and Shanmugam, K.:
Textural features for image classification,
IEEE T. Syst. Man. Cyb.,
6, 610–621, https://doi.org/10.1109/TSMC.1973.4309314, 1973.
Hastie, T., Tibshirani, R., and Friedman, J.:
The elements of statistical learning: Data mining, inference, and prediction,
Springer Series in Statistics,
Springer, New York, USA, 2009.
Holli, K., Lääperi, A. L., Harrison, L., Luukkaala, T., Toivonen, T., Ryymin, P., Dastidar, P., Soimakallio, S., and Eskola, H.:
Characterization of breast cancer types by texture analysis of magnetic resonance images,
Acad. Radiol.,
17, 135–141, https://doi.org/10.1016/j.acra.2009.08.012, 2010.
Huld, T., Müller, R., and Gambardella, A.:
A new solar radiation database for estimating PV performance in Europe and Africa,
Sol. Energy,
86, 1803–1815, https://doi.org/10.1016/j.solener.2012.03.006, 2012.
Hussain, A. K. M. F.:
Coherent structures – Reality and myth,
Phys. Fluids,
26, 2816–2850, https://doi.org/10.1063/1.864048, 1983.
Hutchins, N. and Marusic, I.:
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers,
J. Fluid Mech.,
579, 1–28, https://doi.org/10.1017/S0022112006003946, 2007.
Iwai, H., Ishii, S., Tsunematsu, N., Mizutani, K., Murayama, Y., Itabe, T., Yamada, I., Matayoshi, N., Matsushima, D., Weiming, S., Yamazaki, T., and Iwasaki, T.:
Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks,
Geophys. Res. Lett.,
35, L14808, https://doi.org/10.1029/2008GL034571, 2008.
James, G., Witten, D., Hastie, T., and Tibshirani, R.:
An introduction to statistical learning,
Springer Texts in Statistics,
Springer, New York, USA, https://doi.org/10.1007/978-1-4614-7138-7, 2000.
Kayitakire, F., Hamel, C., and Defourny, P.:
Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery,
Remote Sens. Environ.,
102, 390–401, https://doi.org/10.1016/j.rse.2006.02.022, 2006.
Kelly, R. D.:
A single Doppler radar study of horizontal-roll convection in a lake-effect snow storm (Lake-Michigan),
J. Atmos. Sci.,
39, 1521–1531, https://doi.org/10.1175/1520-0469(1982)039<1521:ASDRSO>2.0.CO;2, 1982.
Khanna, S. and Brasseur, J. G.:
Three-dimensional buoyancy and shear-induced local structure of the atmospheric boundary layer,
J. Atmos. Sci.,
55, 710–743, https://doi.org/10.1175/1520-0469(1998)055<0710:TDBASI>2.0.CO;2, 1998.
Klein, A., Ravetta, F., Thomas, J. L., Ancellet, G., Augustin, P., Wilson, R., Dieudonné, E., Fourmentin, M., Delbarre, H., and Pelon, J.:
Influence of vertical mixing and nighttime transport on surface ozone variability in the morning in Paris and the surrounding region,
Atmos. Environ.,
197, 92–102, https://doi.org/10.1016/j.atmosenv.2018.10.009, 2019.
Kropfli, R. A. and Kohn, N. M.:
Persistent horizontal rolls in the urban mixed layer as revealed by dual-Doppler radar,
J. Appl. Meteorol.,
17, 669–676, https://doi.org/10.1175/1520-0450(1978)017<0669:phritu>2.0.co;2, 1978.
Kubat, M.:
An introduction to machine learning,
Springer International Publishing, Springer, New York, USA, https://doi.org/10.1007/978-3-319-63913-0, 2017.
Kunkel, K. E., Eloranta, E. W., and Weinman, J. A.:
Remote determination of winds, turbulence spectra and energy dissipation rates in the boundary layer from lidar measurements,
J. Atmos. Sci.,
37, 978–985, https://doi.org/10.1175/1520-0469(1980)037<0978:rdowts>2.0.co;2, 1980.
LeMone, M.:
The structure and dynamics of the horizontal roll vortices in the planetary boundary layer,
J. Atmos. Sci.,
30, 1077–1091, https://doi.org/10.1175/1520-0469(1973)030<1077:tsadoh>2.0.co;2, 1972.
Lemonsu, A. and Masson, V.:
Simulation of a summer urban breeze over Paris,
Bound.-Lay. Meteorol.,
104, 463–490, https://doi.org/10.1023/A:1016509614936, 2002.
Lhermitte, R. M.:
Note on wind variability with Doppler radar,
J. Atmos. Sci.,
19, 343–346, https://doi.org/10.1175/1520-0469(1962)019%3C0343:NOWVWD%3E2.0.CO;2, 1962.
Lohou, F., Druilhet, A., and Campistron, B.:
Spatial and temporal characteristics of horizontal rolls and cells in the atmospheric boundary layer based on radar and in situ observations,
Bound.-Lay. Meteorol.,
89, 407–444, https://doi.org/10.1023/A:1001791408470, 1998.
Moeng, C.-H. and Sullivan, P. P.:
A comparison of shear and buoyancy-driven planetary boundary layer flows,
J. Atmos. Sci.,
51, 999–1022, https://doi.org/10.1175/1520-0469(1994)051<0999:acosab>2.0.co;2, 1994.
Newsom, R., Calhoun, R., Ligon, D., and Allwine, J.:
Linearly organized turbulence structures observed over a suburban area by Dual-Doppler lidar,
Bound.-Lay. Meteorol.,
127, 111–130, https://doi.org/10.1007/s10546-007-9243-0, 2008.
Reinking, R. F., Doviak, R. J., and Gilmer, R. O.:
Clear-air roll vortices and turbulent motions as detected with an airborne gust probe and dual-Doppler radar,
J. Appl. Meteorol.,
20, 678–685, https://doi.org/10.1175/1520-0450(1981)020<0678:CARVAT>2.0.CO;2, 1981.
Saint-Pierre, C., Becue, V., Diab, Y., and Teller, J.:
Case study of mixed-use high-rise location at the Greater Paris scale,
WIT Trans. Ecol. Envir.,
129, 251–262, https://doi.org/10.2495/SC100221, 2010.
Sandeepan, B. S., Rakesh, P. T., and Venkatesan, R.:
Observation and simulation of boundary layer coherent roll structures and their effect on pollution dispersion,
Atmos. Res.,
120, 181–191, https://doi.org/10.1016/j.atmosres.2012.08.016, 2013.
Sokolov, A., Dmitriev, E., Gengembre, C., and Delbarre, H.:
Automated classification of regional meteorological events in a coastal area using in-situ measurements,
J. Atmos. Ocean. Tech., 37, 723–739, https://doi.org/10.1175/JTECH-D-19-0120.1, 2020.
Soldati, A.:
Particles turbulence interactions in boundary layers,
ZAMM J. Appl. Math. Mech.,
85, 683–699, https://doi.org/10.1002/zamm.200410213, 2005.
Srivastava, D., Rajitha, B., Agarwal, S., and Singh, S.:
Pattern-based image retrieval using GLCM,
Neural Comput. Appl.,
32, 1–14, https://doi.org/10.1007/s00521-018-3611-1, 2018.
Stull, R. B.:
An introduction to boundary layer meteorology,
Kluwer Academic Publishers, Springer, Dordrecht, Germany, https://doi.org/10.1007/978-94-009-3027-8, 1988.
Träumner, K., Damian, T., Stawiarski, C., and Wieser, A.:
Turbulent structures and coherence in the atmospheric surface layer,
Bound.-Lay. Meteorol.,
154, 1–25, https://doi.org/10.1007/s10546-014-9967-6, 2015.
Troude, F., Dupont, E., Carissimo, B., and Flossmann, A. I.:
Relative influence of urban and orographic effects for low wind conditions in the Paris area,
Bound.-Lay. Meteorol.,
103, 493–505, https://doi.org/10.1023/A:1014903627803, 2002.
Tur, A. V. and Levich, E.:
The origin of organized motion in turbulence,
Fluid Dyn. Res.,
10, 75–90, https://doi.org/10.1016/0169-5983(92)90009-L, 1992.
Vasiljević, N., Lea, G., Courtney, M., Cariou, J.-P., Mann, J., and Mikkelsen, T.:
Long-range WindScanner system,
Remote Sens.-Basel,
8, 896, https://doi.org/10.3390/rs8110896, 2016.
Weckwerth, T. M. and Parsons, D. B.:
A review of convection initiation and motivation for IHOP_2002,
Mon. Weather Rev.,
134, 5–22, https://doi.org/10.1175/MWR3067.1, 2006.
Weckwerth, T. M., Horst, T. W., and Wilson, J. W.:
An observational study of the evolution of horizontal convective rolls,
Mon. Weather Rev.,
127, 2160–2179, https://doi.org/10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2, 1999.
Wilson, R. B., Start, G. E., Dickson, C. R., and Ricks, N. R.:
Diffusion under low windspeed conditions near Oak Ridge, Tennessee,
NOAA Technical Memorandum ERL ARL-61, 83, 1976.
Yang, X., Tridandapani, S., Beitler, J. J., Yu, D. S., Yoshida, E. J., Curran, W. J., and Liu, T.:
Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: An in vivo study of late toxicity,
Med. Phys.,
39, 5732–5739, https://doi.org/10.1118/1.4747526, 2012.
Young, G. S., Kristovich, D. A. R., Hjelmfelt, M. R., and Foster, R. C.: Rolls, streets, waves, and more:
A review of quasi-two-dimensional structures in the atmospheric boundary layer,
B. Am. Meteorol. Soc.,
83, 997–1002, https://doi.org/10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2, 2002.
Short summary
The current study presents an automated method to classify coherent structures near the surface, based on the observations recorded by a single scanning Doppler lidar. This methodology combines texture analysis with a supervised machine-learning algorithm in order to study large datasets. The algorithm classified correctly about 91 % of cases of a training ensemble (150 scans). Furthermore the results of a 2-month classified dataset (4577 scans) by the algorithm are presented.
The current study presents an automated method to classify coherent structures near the surface,...