Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6579-2020
https://doi.org/10.5194/amt-13-6579-2020
Research article
 | 
07 Dec 2020
Research article |  | 07 Dec 2020

Detecting turbulent structures on single Doppler lidar large datasets: an automated classification method for horizontal scans

Ioannis Cheliotis, Elsa Dieudonné, Hervé Delbarre, Anton Sokolov, Egor Dmitriev, Patrick Augustin, and Marc Fourmentin

Related authors

From CO2 emissions to atmospheric NO2 mixing ratios: simulating chemical processes and their impacts on TROPOMI retrievals over the Middle East
Ioannis Cheliotis, Thomas Lauvaux, Jinghui Lian, Theodoros Christoudias, George Georgiou, Alba Badia, Frédéric Chevallier, Pramod Kumar, Yathin Kudupaje, Ruixue Lei, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2023-2487,https://doi.org/10.5194/egusphere-2023-2487, 2023
Preprint withdrawn
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025,https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024,https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary

Cited articles

Adrian, R. J.: Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, 41301, https://doi.org/10.1063/1.2717527, 2007. 
Alparone, L., Benelli, G., and Vagniluca, A.: Texture-based analysis techniques for the classification of radar images, IET Digital Library, IEE Proc. F, 137, 276–282, https://doi.org/10.1049/ip-f-2.1990.0041, 1990. 
Aouizerats, B., Tulet, P., Pigeon, G., Masson, V., and Gomes, L.: High resolution modelling of aerosol dispersion regimes during the CAPITOUL field experiment: from regional to local scale interactions, Atmos. Chem. Phys., 11, 7547–7560, https://doi.org/10.5194/acp-11-7547-2011, 2011. 
Banta, R. M., Newsom, R. K., Lundquist, J. K., Pichugina, Y. L., Coulter, R. L., and Mahrt, L.: Nocturnal low-level jet characteristics over Kansas during cases-99, Bound.-Lay. Meteorol., 105, 221–252, https://doi.org/10.1023/A:1019992330866, 2002. 
Barthlott, C., Drobinski, P., Fesquet, C., Dubos, T., and Pietras, C.: Long-term study of coherent structures in the atmospheric surface layer, Bound.-Lay. Meteorol., 125, 1–24, https://doi.org/10.1007/s10546-007-9190-9, 2007. 
Download
Short summary
The current study presents an automated method to classify coherent structures near the surface, based on the observations recorded by a single scanning Doppler lidar. This methodology combines texture analysis with a supervised machine-learning algorithm in order to study large datasets. The algorithm classified correctly about 91 % of cases of a training ensemble (150 scans). Furthermore the results of a 2-month classified dataset (4577 scans) by the algorithm are presented.