Articles | Volume 13, issue 12
https://doi.org/10.5194/amt-13-6945-2020
https://doi.org/10.5194/amt-13-6945-2020
Research article
 | 
21 Dec 2020
Research article |  | 21 Dec 2020

Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope

Martine Collaud Coen, Elisabeth Andrews, Alessandro Bigi, Giovanni Martucci, Gonzague Romanens, Frédéric P. A. Vogt, and Laurent Vuilleumier

Viewed

Total article views: 6,376 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
4,591 1,706 79 6,376 83 80
  • HTML: 4,591
  • PDF: 1,706
  • XML: 79
  • Total: 6,376
  • BibTeX: 83
  • EndNote: 80
Views and downloads (calculated since 17 Jun 2020)
Cumulative views and downloads (calculated since 17 Jun 2020)

Viewed (geographical distribution)

Total article views: 6,376 (including HTML, PDF, and XML) Thereof 6,268 with geography defined and 108 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 13 Dec 2024
Short summary
The Mann–Kendall trend test requires prewhitening in the presence of serially correlated data. The effects of five prewhitening methods and time granularity, autocorrelation, temporal segmentation and length of the time series on the statistical significance and the slope are studies for seven atmospheric datasets. Finally, a new algorithm using three prewhitening methods is proposed in order to optimize the power of the test, the amount of erroneous false positive trends and the slope estimate.