Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-1333-2021
https://doi.org/10.5194/amt-14-1333-2021
Research article
 | 
22 Feb 2021
Research article |  | 22 Feb 2021

Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne

Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele

Related authors

The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022,https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
Validation of aerosol backscatter profiles from Raman lidar and ceilometer using balloon-borne measurements
Simone Brunamonti, Giovanni Martucci, Gonzague Romanens, Yann Poltera, Frank G. Wienhold, Maxime Hervo, Alexander Haefele, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 21, 2267–2285, https://doi.org/10.5194/acp-21-2267-2021,https://doi.org/10.5194/acp-21-2267-2021, 2021
Short summary
Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope
Martine Collaud Coen, Elisabeth Andrews, Alessandro Bigi, Giovanni Martucci, Gonzague Romanens, Frédéric P. A. Vogt, and Laurent Vuilleumier
Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020,https://doi.org/10.5194/amt-13-6945-2020, 2020
Short summary
A Raman lidar tropospheric water vapour climatology and height-resolved trend analysis over Payerne, Switzerland
Shannon Hicks-Jalali, Robert J. Sica, Giovanni Martucci, Eliane Maillard Barras, Jordan Voirin, and Alexander Haefele
Atmos. Chem. Phys., 20, 9619–9640, https://doi.org/10.5194/acp-20-9619-2020,https://doi.org/10.5194/acp-20-9619-2020, 2020
Short summary
Retrieval of temperature from a multiple channel pure rotational Raman backscatter lidar using an optimal estimation method
Shayamila Mahagammulla Gamage, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 12, 5801–5816, https://doi.org/10.5194/amt-12-5801-2019,https://doi.org/10.5194/amt-12-5801-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Evaluation of tropospheric water vapour and temperature profiles retrieved from MetOp-A by the Infrared and Microwave Sounding scheme
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023,https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
The impacts of assimilating Aeolus horizontal line-of-sight winds on numerical predictions of Hurricane Ida (2021) and a mesoscale convective system over the Atlantic Ocean
Chengfeng Feng and Zhaoxia Pu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-341,https://doi.org/10.5194/amt-2022-341, 2023
Revised manuscript accepted for AMT
Short summary
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022,https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
An improved vertical correction method for the inter-comparison and inter-validation of integrated water vapour measurements
Olivier Bock, Pierre Bosser, and Carl Mears
Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022,https://doi.org/10.5194/amt-15-5643-2022, 2022
Short summary
An assessment of reprocessed GPS/MET observations spanning 1995–1997
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022,https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary

Cited articles

Achtert, P., Khaplanov, M., Khosrawi, F., and Gumbel, J.: Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere, Atmos. Meas. Tech., 6, 91–98, https://doi.org/10.5194/amt-6-91-2013, 2013. a
Adam, S., Behrendt, A., Schwitalla, T., Hammann, E., and Wulfmeyer, V.: First assimilation of temperature lidar data into an NWP model:impact on the simulation of the temperature field, inversion strength and PBL depth, Q. J. Roy. Meteor. Soc., 142, 2882–2896, https://doi.org/10.1002/qj.2875, 2016. a
Alpers, M., Eixmann, R., Fricke-Begemann, C., Gerding, M., and Höffner, J.: Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering, Atmos. Chem. Phys., 4, 793–800, https://doi.org/10.5194/acp-4-793-2004, 2004. a
Argall, P. S.: Upper altitude limit for Rayleigh lidar, Ann. Geophys., 25, 19–25, https://doi.org/10.5194/angeo-25-19-2007, 2007. a
Balin, I., Serikov, I., Bobrovnikov, S., Simeonov, V., Calpini, B., Arshinov, Y., and van den Bergh, H.: Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational–pure-rotational Raman lidar, Appl. Phys. B-Lasers O., 79, 775–782, https://doi.org/10.1007/s00340-004-1631-2, 2004. a
Download
Short summary
This article presents a validation of 1.5 years of pure rotational temperature data measured by the Raman lidar RALMO installed at the MeteoSwiss station of Payerne. The statistical results are in terms of bias and standard deviation with respect to two well-established radiosounding systems. The statistics are divided into daytime (bias = 0.28 K, SD = 0.62±0.03 K) and nighttime (bias = 0.29 K, SD = 0.66±0.06 K). The lidar temperature profiles are applied to cloud supersaturation studies.