Articles | Volume 14, issue 4
https://doi.org/10.5194/amt-14-2737-2021
https://doi.org/10.5194/amt-14-2737-2021
Research article
 | 
08 Apr 2021
Research article |  | 08 Apr 2021

Improving atmospheric path attenuation estimates for radio propagation applications by microwave radiometric profiling

Ayham Alyosef, Domenico Cimini, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Marianna Biscarini, Luca Milani, Antonio Martellucci, Sabrina Gentile, Saverio T. Nilo, Francesco Di Paola, Ayman Alkhateeb, and Filomena Romano

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Domenico Cimini on behalf of the Authors (19 Feb 2021)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (27 Feb 2021) by Paolo Di Girolamo
AR by Domenico Cimini on behalf of the Authors (01 Mar 2021)
Download
Short summary
Telecommunication is based on the propagation of radio signals through the atmosphere. The signal power diminishes along the path due to atmospheric attenuation, which needs to be estimated to be accounted for. In a study funded by the European Space Agency, we demonstrate an innovative method improving atmospheric attenuation estimates from ground-based radiometric measurements by 10–30 %. More accurate atmospheric attenuation estimates imply better telecommunication services in the future.