Articles | Volume 14, issue 4
Atmos. Meas. Tech., 14, 2737–2748, 2021
https://doi.org/10.5194/amt-14-2737-2021

Special issue: Tropospheric profiling (ISTP11) (AMT/ACP inter-journal SI)

Atmos. Meas. Tech., 14, 2737–2748, 2021
https://doi.org/10.5194/amt-14-2737-2021
Research article
08 Apr 2021
Research article | 08 Apr 2021

Improving atmospheric path attenuation estimates for radio propagation applications by microwave radiometric profiling

Ayham Alyosef et al.

Related authors

Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O’Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-14,https://doi.org/10.5194/amt-2022-14, 2022
Preprint under review for AMT
Short summary
Snow cover prediction in the Italian Central Apennines using weather forecast and snowpack numerical models
Edoardo Raparelli, Paolo Tuccella, Valentina Colaiuda, and Frank Silvio Marzano
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-285,https://doi.org/10.5194/tc-2021-285, 2021
Preprint under review for TC
Short summary
Investigating 3D and 4D variational rapid-update-cycling assimilation of weather radar reflectivity for a heavy rain event in central Italy
Vincenzo Mazzarella, Rossella Ferretti, Errico Picciotti, and Frank Silvio Marzano
Nat. Hazards Earth Syst. Sci., 21, 2849–2865, https://doi.org/10.5194/nhess-21-2849-2021,https://doi.org/10.5194/nhess-21-2849-2021, 2021
Short summary
Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020,https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845, https://doi.org/10.5194/gmd-12-1833-2019,https://doi.org/10.5194/gmd-12-1833-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Continuous temperature soundings at the stratosphere and lower mesosphere with a ground-based radiometer considering the Zeeman effect
Witali Krochin​​​​​​​, Francisco Navas-Guzmán, David Kuhl, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 15, 2231–2249, https://doi.org/10.5194/amt-15-2231-2022,https://doi.org/10.5194/amt-15-2231-2022, 2022
Short summary
Retrieval of solar-induced chlorophyll fluorescence (SIF) from satellite measurements: comparison of SIF between TanSat and OCO-2
Lu Yao, Yi Liu, Dongxu Yang, Zhaonan Cai, Jing Wang, Chao Lin, Naimeng Lu, Daren Lyu, Longfei Tian, Maohua Wang, Zengshan Yin, Yuquan Zheng, and Sisi Wang
Atmos. Meas. Tech., 15, 2125–2137, https://doi.org/10.5194/amt-15-2125-2022,https://doi.org/10.5194/amt-15-2125-2022, 2022
Short summary
Identification of tropical cyclones via deep convolutional neural network based on satellite cloud images
Biao Tong, Xiangfei Sun, Jiyang Fu, Yuncheng He, and Pakwai Chan
Atmos. Meas. Tech., 15, 1829–1848, https://doi.org/10.5194/amt-15-1829-2022,https://doi.org/10.5194/amt-15-1829-2022, 2022
Short summary
Time evolution of temperature profiles retrieved from 13 years of infrared atmospheric sounding interferometer (IASI) data using an artificial neural network
Marie Bouillon, Sarah Safieddine, Simon Whitburn, Lieven Clarisse, Filipe Aires, Victor Pellet, Olivier Lezeaux, Noëlle A. Scott, Marie Doutriaux-Boucher, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 1779–1793, https://doi.org/10.5194/amt-15-1779-2022,https://doi.org/10.5194/amt-15-1779-2022, 2022
Short summary
Emissivity retrievals with FORUM's end-to-end simulator: challenges and recommendations
Maya Ben-Yami, Hilke Oetjen, Helen Brindley, William Cossich, Dulce Lajas, Tiziano Maestri, Davide Magurno, Piera Raspollini, Luca Sgheri, and Laura Warwick
Atmos. Meas. Tech., 15, 1755–1777, https://doi.org/10.5194/amt-15-1755-2022,https://doi.org/10.5194/amt-15-1755-2022, 2022
Short summary

Cited articles

Acosta, R. J., Nessel, J. A., Simons, R. N., Zemba, M. J., Morse, J. R., and Budinger J. M.: W/V-Band RF Propagation Experiment Design, 18th Ka and Broadband Communication Conference, available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120016067.pdf (last access: 31 July 2020), Ottawa, Canada, 24 September 2012, 2012. 
Bevington, P. R. and Keith Robinson, D.: Data Reduction and Error Analysis for the Physical Sciences (3rd Edition), ISBN 0-07-247227-8, McGraw-Hill, New York, NY 10020, USA, 2003. 
Biscarini, M. and Marzano, F. S.: Generalized Parametric Prediction Model of the Mean Radiative Temperature for Microwave Slant Paths in All-Weather Condition, IEEE T. Antenn. Propag., 68, 1031–1043, 2020. 
Biscarini, M., Montopoli, M., and Marzano, F. S.: Evaluation of High-Frequency Channels for Deep-Space Data Transmission Using Radiometeorological Model Forecast, IEEE T. Antenn. Propag., 65, 1311–1320, 2017. 
Biscarini, M., Milani, L., Montopoli, M., De Sanctis, K., Di Fabio, S., Magde, K. M., Brost, G. A., and Marzano, F. S.: Exploiting Tropospheric Measurements From Sun-Tracking Radiometer for Radiopropagation Models at Centimeter and Millimeter Wave, IEEE J. Sel. Top. Appl., 12, 1697–1708, 2019. 
Download
Short summary
Telecommunication is based on the propagation of radio signals through the atmosphere. The signal power diminishes along the path due to atmospheric attenuation, which needs to be estimated to be accounted for. In a study funded by the European Space Agency, we demonstrate an innovative method improving atmospheric attenuation estimates from ground-based radiometric measurements by 10–30 %. More accurate atmospheric attenuation estimates imply better telecommunication services in the future.