Articles | Volume 14, issue 7
https://doi.org/10.5194/amt-14-4971-2021
https://doi.org/10.5194/amt-14-4971-2021
Research article
 | 
16 Jul 2021
Research article |  | 16 Jul 2021

Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region

Jun Inoue, Yutaka Tobo, Kazutoshi Sato, Fumikazu Taketani, and Marion Maturilli

Related authors

Freshwater in the Arctic Ocean 2010–2019
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021,https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones
Takehiko Nose, Takuji Waseda, Tsubasa Kodaira, and Jun Inoue
The Cryosphere, 14, 2029–2052, https://doi.org/10.5194/tc-14-2029-2020,https://doi.org/10.5194/tc-14-2029-2020, 2020
Short summary
Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67° S to 75° N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport
Yugo Kanaya, Kazuyuki Miyazaki, Fumikazu Taketani, Takuma Miyakawa, Hisahiro Takashima, Yuichi Komazaki, Xiaole Pan, Saki Kato, Kengo Sudo, Takashi Sekiya, Jun Inoue, Kazutoshi Sato, and Kazuhiro Oshima
Atmos. Chem. Phys., 19, 7233–7254, https://doi.org/10.5194/acp-19-7233-2019,https://doi.org/10.5194/acp-19-7233-2019, 2019
Short summary
Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice–ocean data assimilation system
Takuya Nakanowatari, Jun Inoue, Kazutoshi Sato, Laurent Bertino, Jiping Xie, Mio Matsueda, Akio Yamagami, Takeshi Sugimura, Hironori Yabuki, and Natsuhiko Otsuka
The Cryosphere, 12, 2005–2020, https://doi.org/10.5194/tc-12-2005-2018,https://doi.org/10.5194/tc-12-2005-2018, 2018
Short summary
Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics
Yoshimi Kawai, Masaki Katsumata, Kazuhiro Oshima, Masatake E. Hori, and Jun Inoue
Atmos. Meas. Tech., 10, 2485–2498, https://doi.org/10.5194/amt-10-2485-2017,https://doi.org/10.5194/amt-10-2485-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
IceDetectNet: a rotated object detection algorithm for classifying components of aggregated ice crystals with a multi-label classification scheme
Huiying Zhang, Xia Li, Fabiola Ramelli, Robert O. David, Julie Pasquier, and Jan Henneberger
Atmos. Meas. Tech., 17, 7109–7128, https://doi.org/10.5194/amt-17-7109-2024,https://doi.org/10.5194/amt-17-7109-2024, 2024
Short summary
Distribution characteristics of the summer precipitation raindrop spectrum on the Qinghai–Tibet Plateau
Fuzeng Wang, Yuanyu Duan, Yao Huo, Yaxi Cao, Qiusong Wang, Tong Zhang, Junqing Liu, and Guangmin Cao
Atmos. Meas. Tech., 17, 6933–6944, https://doi.org/10.5194/amt-17-6933-2024,https://doi.org/10.5194/amt-17-6933-2024, 2024
Short summary
In situ observations of supercooled liquid water clouds over Dome C, Antarctica, by balloon-borne sondes
Philippe Ricaud, Pierre Durand, Paolo Grigioni, Massimo Del Guasta, Giuseppe Camporeale, Axel Roy, Jean-Luc Attié, and John Bognar
Atmos. Meas. Tech., 17, 5071–5089, https://doi.org/10.5194/amt-17-5071-2024,https://doi.org/10.5194/amt-17-5071-2024, 2024
Short summary
Partition between supercooled liquid droplets and ice crystals in mixed-phase clouds based on airborne in situ observations
Flor Vanessa Maciel, Minghui Diao, and Ching An Yang
Atmos. Meas. Tech., 17, 4843–4861, https://doi.org/10.5194/amt-17-4843-2024,https://doi.org/10.5194/amt-17-4843-2024, 2024
Short summary
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary

Cited articles

Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., KrÄmer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud ice properties: In situ measurement challenges, Meteor. Mon., 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017. a
Beswick, K., Baumgardner, D., Gallagher, M., Volz-Thomas, A., Nedelec, P., Wang, K.-Y., and Lance, S.: The backscatter cloud probe – a compact low-profile autonomous optical spectrometer, Atmos. Meas. Tech., 7, 1443–1457, https://doi.org/10.5194/amt-7-1443-2014, 2014. a, b, c
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Fagerberg, J., Mowery, D., and Nelson, R., chap. 7. Clouds and Aerosols, Cambridge University Press, Cambridge, UK and New York, NY, USA, 571–657, 2013. a
Craig, L., Schanot, A., Moharreri, A., Rogers, D. C., and Dhaniyala, S.: Design and sampling characteristics of a new airborne aerosol inlet for aerosol measurements in clouds, J. Atmos. Ocean. Tech., 30, 1123–1135, https://doi.org/10.1175/JTECH-D-12-00168.1, 2013. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of Climate Models, chap. 9, Cambridge University Press, Cambridge, UK and New York, NY, USA, 741–866, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Download
Short summary
A cloud particle sensor (CPS) sonde is an observing system to obtain the signals of the phase, size, and the number of cloud particles. Based on the field experiments in the Arctic regions and numerical experiments, we proposed a method to correct the CPS sonde data and found that the CPS sonde system can appropriately observe the liquid cloud if our correction method is applied.