Articles | Volume 14, issue 7
Atmos. Meas. Tech., 14, 4971–4987, 2021
https://doi.org/10.5194/amt-14-4971-2021
Atmos. Meas. Tech., 14, 4971–4987, 2021
https://doi.org/10.5194/amt-14-4971-2021

Research article 16 Jul 2021

Research article | 16 Jul 2021

Application of cloud particle sensor sondes for estimating the number concentration of cloud water droplets and liquid water content: case studies in the Arctic region

Jun Inoue et al.

Related authors

Freshwater in the Arctic Ocean 2010–2019
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021,https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Satellite-retrieved sea ice concentration uncertainty and its effect on modelling wave evolution in marginal ice zones
Takehiko Nose, Takuji Waseda, Tsubasa Kodaira, and Jun Inoue
The Cryosphere, 14, 2029–2052, https://doi.org/10.5194/tc-14-2029-2020,https://doi.org/10.5194/tc-14-2029-2020, 2020
Short summary
Ozone and carbon monoxide observations over open oceans on R/V Mirai from 67° S to 75° N during 2012 to 2017: testing global chemical reanalysis in terms of Arctic processes, low ozone levels at low latitudes, and pollution transport
Yugo Kanaya, Kazuyuki Miyazaki, Fumikazu Taketani, Takuma Miyakawa, Hisahiro Takashima, Yuichi Komazaki, Xiaole Pan, Saki Kato, Kengo Sudo, Takashi Sekiya, Jun Inoue, Kazutoshi Sato, and Kazuhiro Oshima
Atmos. Chem. Phys., 19, 7233–7254, https://doi.org/10.5194/acp-19-7233-2019,https://doi.org/10.5194/acp-19-7233-2019, 2019
Short summary
Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice–ocean data assimilation system
Takuya Nakanowatari, Jun Inoue, Kazutoshi Sato, Laurent Bertino, Jiping Xie, Mio Matsueda, Akio Yamagami, Takeshi Sugimura, Hironori Yabuki, and Natsuhiko Otsuka
The Cryosphere, 12, 2005–2020, https://doi.org/10.5194/tc-12-2005-2018,https://doi.org/10.5194/tc-12-2005-2018, 2018
Short summary
Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics
Yoshimi Kawai, Masaki Katsumata, Kazuhiro Oshima, Masatake E. Hori, and Jun Inoue
Atmos. Meas. Tech., 10, 2485–2498, https://doi.org/10.5194/amt-10-2485-2017,https://doi.org/10.5194/amt-10-2485-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
24-hour cloud cover calculation using ground-based imager with machine learning
Bu-Yo Kim, Joo Wan Cha, and Ki-Ho Chang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-179,https://doi.org/10.5194/amt-2021-179, 2021
Revised manuscript accepted for AMT
Short summary
The University of Washington Ice-Liquid Discriminator (UWILD) improves single particle phase classifications of hydrometeors within Southern Ocean clouds using machine learning
Rachel Atlas, Johannes Mohrmann, Joseph Finlon, Jeremy Lu, Ian Hsiao, Robert Wood, and Minghui Diao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-123,https://doi.org/10.5194/amt-2021-123, 2021
Revised manuscript accepted for AMT
Short summary
Clouds over Hyytiälä, Finland: an algorithm to classify clouds based on solar radiation and cloud base height measurements
Ilona Ylivinkka, Santeri Kaupinmäki, Meri Virman, Maija Peltola, Ditte Taipale, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Ekaterina Ezhova
Atmos. Meas. Tech., 13, 5595–5619, https://doi.org/10.5194/amt-13-5595-2020,https://doi.org/10.5194/amt-13-5595-2020, 2020
Short summary
A convolutional neural network for classifying cloud particles recorded by imaging probes
Georgios Touloupas, Annika Lauber, Jan Henneberger, Alexander Beck, and Aurélien Lucchi
Atmos. Meas. Tech., 13, 2219–2239, https://doi.org/10.5194/amt-13-2219-2020,https://doi.org/10.5194/amt-13-2219-2020, 2020
Short summary
Spatiotemporal variability of solar radiation introduced by clouds over Arctic sea ice
Carola Barrientos Velasco, Hartwig Deneke, Hannes Griesche, Patric Seifert, Ronny Engelmann, and Andreas Macke
Atmos. Meas. Tech., 13, 1757–1775, https://doi.org/10.5194/amt-13-1757-2020,https://doi.org/10.5194/amt-13-1757-2020, 2020
Short summary

Cited articles

Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A., Korolev, A., KrÄmer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud ice properties: In situ measurement challenges, Meteor. Mon., 58, 9.1–9.23, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0011.1, 2017. a
Beswick, K., Baumgardner, D., Gallagher, M., Volz-Thomas, A., Nedelec, P., Wang, K.-Y., and Lance, S.: The backscatter cloud probe – a compact low-profile autonomous optical spectrometer, Atmos. Meas. Tech., 7, 1443–1457, https://doi.org/10.5194/amt-7-1443-2014, 2014. a, b, c
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., and Zhang, X.: in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Fagerberg, J., Mowery, D., and Nelson, R., chap. 7. Clouds and Aerosols, Cambridge University Press, Cambridge, UK and New York, NY, USA, 571–657, 2013. a
Craig, L., Schanot, A., Moharreri, A., Rogers, D. C., and Dhaniyala, S.: Design and sampling characteristics of a new airborne aerosol inlet for aerosol measurements in clouds, J. Atmos. Ocean. Tech., 30, 1123–1135, https://doi.org/10.1175/JTECH-D-12-00168.1, 2013. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.: Evaluation of Climate Models, chap. 9, Cambridge University Press, Cambridge, UK and New York, NY, USA, 741–866, https://doi.org/10.1017/CBO9781107415324.020, 2013. a
Download
Short summary
A cloud particle sensor (CPS) sonde is an observing system to obtain the signals of the phase, size, and the number of cloud particles. Based on the field experiments in the Arctic regions and numerical experiments, we proposed a method to correct the CPS sonde data and found that the CPS sonde system can appropriately observe the liquid cloud if our correction method is applied.