Articles | Volume 14, issue 8
https://doi.org/10.5194/amt-14-5429-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-14-5429-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles
Weimeng Kong
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
now at: California Air Resources Board, Sacramento, CA 95814, USA
Stavros Amanatidis
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Huajun Mai
Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Changhyuk Kim
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
now at: Department of Environmental Engineering, Pusan National University, Busan, Republic of Korea
Benjamin C. Schulze
Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Yuanlong Huang
Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Gregory S. Lewis
Aerosol Dynamics Inc., Berkeley, CA, USA
Susanne V. Hering
Aerosol Dynamics Inc., Berkeley, CA, USA
John H. Seinfeld
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Related authors
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Neil M. Donahue, Victoria Hofbauer, Henning Finkenzeller, Dominik Stolzenburg, Paulus S. Bauer, Randall Chiu, Lubna Dada, Jonathan Duplissy, Xu-Cheng He, Martin Heinritzi, Christopher R. Hoyle, Andreas Kürten, Aleksandr Kvashnin, Katrianne Lehtipalo, Naser Mahfouz, Vladimir Makhmutov, Roy L. Mauldin III, Ugo Molteni, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Mario Simon, Andrea C. Wagner, Mingyi Wang, Chao Yan, Penglin Ye, Ilona Riipinen, Hamish Gordon, Joachim Curtius, Armin Hansel, Imad El Haddad, Markku Kulmala, Douglas R. Worsnop, Rainer Volkamer, Paul M. Winkler, Jasper Kirkby, and Richard Flagan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2412, https://doi.org/10.5194/egusphere-2025-2412, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We describe accurate measurement of particle formation and growth in the CERN CLOUD chamber, using a suite of gas- and particle-phase instruments. The interconnected measurements establish high accuracy in key particle properties and critically important gas-phase sulfuric acid. This is a template for accurate calibration of similar experiments and thus accurate determination of aerosol nucleation and growth rates, which are an important source of uncertainty in climate science.
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
Atmos. Chem. Phys., 25, 1883–1897, https://doi.org/10.5194/acp-25-1883-2025, https://doi.org/10.5194/acp-25-1883-2025, 2025
Short summary
Short summary
We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol.
Darren Cheng, Stavros Amanatidis, Gregory S. Lewis, and Coty N. Jen
Atmos. Meas. Tech., 18, 197–210, https://doi.org/10.5194/amt-18-197-2025, https://doi.org/10.5194/amt-18-197-2025, 2025
Short summary
Short summary
This study describes a new method, the Condensation Particle Counters For Atmospheric Rapid Measurements (CPC FARM), to measure sub-3 nm size distribution at high time resolution and sensitivity. The CPC FARM is compared to traditionally used particle mobility sizers during a new particle formation campaign to study rapidly changing sub-3 nm particles in Pittsburgh, PA.
Dandan Li, Dongyu Wang, Lucia Caudillo, Wiebke Scholz, Mingyi Wang, Sophie Tomaz, Guillaume Marie, Mihnea Surdu, Elias Eccli, Xianda Gong, Loic Gonzalez-Carracedo, Manuel Granzin, Joschka Pfeifer, Birte Rörup, Benjamin Schulze, Pekka Rantala, Sébastien Perrier, Armin Hansel, Joachim Curtius, Jasper Kirkby, Neil M. Donahue, Christian George, Imad El-Haddad, and Matthieu Riva
Atmos. Meas. Tech., 17, 5413–5428, https://doi.org/10.5194/amt-17-5413-2024, https://doi.org/10.5194/amt-17-5413-2024, 2024
Short summary
Short summary
Due to the analytical challenges of measuring organic vapors, it remains challenging to identify and quantify organic molecules present in the atmosphere. Here, we explore the performance of the Orbitrap chemical ionization mass spectrometer (CI-Orbitrap) using ammonium ion chemistry. This study shows that ammonium-ion-based chemistry associated with the high mass resolution of the Orbitrap mass analyzer can measure almost all inclusive compounds.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Clara M. Nussbaumer, Bryan K. Place, Qindan Zhu, Eva Y. Pfannerstill, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Ryan Ward, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 13015–13028, https://doi.org/10.5194/acp-23-13015-2023, https://doi.org/10.5194/acp-23-13015-2023, 2023
Short summary
Short summary
NOx is a precursor to hazardous tropospheric ozone and can be emitted from various anthropogenic sources. It is important to quantify NOx emissions in urban environments to improve the local air quality, which still remains a challenge, as sources are heterogeneous in space and time. In this study, we calculate NOx emissions over Los Angeles, based on aircraft measurements in June 2021, and compare them to a local emission inventory, which we find mostly overpredicts the measured values.
Eva Y. Pfannerstill, Caleb Arata, Qindan Zhu, Benjamin C. Schulze, Roy Woods, John H. Seinfeld, Anthony Bucholtz, Ronald C. Cohen, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12753–12780, https://doi.org/10.5194/acp-23-12753-2023, https://doi.org/10.5194/acp-23-12753-2023, 2023
Short summary
Short summary
The San Joaquin Valley is an agricultural area with poor air quality. Organic gases drive the formation of hazardous air pollutants. Agricultural emissions of these gases are not well understood and have rarely been quantified at landscape scale. By combining aircraft-based emission measurements with land cover information, we found mis- or unrepresented emission sources. Our results help in understanding of pollution sources and in improving predictions of air quality in agricultural regions.
Weixing Hao, Fan Mei, Susanne Hering, Steven Spielman, Beat Schmid, Jason Tomlinson, and Yang Wang
Atmos. Meas. Tech., 16, 3973–3986, https://doi.org/10.5194/amt-16-3973-2023, https://doi.org/10.5194/amt-16-3973-2023, 2023
Short summary
Short summary
Airborne aerosol instrumentation plays a crucial role in understanding the spatial distribution of ambient aerosol particles. This study investigates a versatile water-based condensation particle counter through simulations and experiments. It provides valuable insights to improve versatile water-based condensation particle counter (vWCPC) aerosol measurement and operation for the community.
Qindan Zhu, Bryan Place, Eva Y. Pfannerstill, Sha Tong, Huanxin Zhang, Jun Wang, Clara M. Nussbaumer, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 9669–9683, https://doi.org/10.5194/acp-23-9669-2023, https://doi.org/10.5194/acp-23-9669-2023, 2023
Short summary
Short summary
Nitrogen oxide (NOx) is a hazardous air pollutant, and it is the precursor of short-lived climate forcers like tropospheric ozone and aerosol particles. While NOx emissions from transportation has been strictly regulated, soil NOx emissions are overlooked. We use the airborne flux measurements to observe NOx emissions from highways and urban and cultivated soil land cover types. We show non-negligible soil NOx emissions, which are significantly underestimated in current model simulations.
Patrick Weber, Oliver F. Bischof, Benedikt Fischer, Marcel Berg, Susanne Hering, Steven Spielman, Gregory Lewis, Andreas Petzold, and Ulrich Bundke
Atmos. Meas. Tech., 16, 3505–3514, https://doi.org/10.5194/amt-16-3505-2023, https://doi.org/10.5194/amt-16-3505-2023, 2023
Short summary
Short summary
This study tests the new water condensation particle counter (MAGIC 210-LP) for deployment on passenger aircraft coordinated by the European research infrastructure IAGOS. We conducted a series of laboratory experiments for flight altitude conditions. We demonstrate that this water condensation particle counter model shows excellent agreement with a butanol-based instrument used in parallel and a Faraday cup electrometer as reference instrument at all tested pressure conditions.
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023, https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary
Short summary
Attachment rate coefficients between ions and charged aerosol particles determine their lifetimes and may also influence cloud dynamics and aerosol processing. Here we present novel experiments that measure ion–aerosol attachment rate coefficients for multiply charged aerosol particles under atmospheric conditions in the CERN CLOUD chamber. Our results provide experimental discrimination between various theoretical models.
Lucía Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Bräkling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoé Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, António Tomé, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, André Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 23, 6613–6631, https://doi.org/10.5194/acp-23-6613-2023, https://doi.org/10.5194/acp-23-6613-2023, 2023
Short summary
Short summary
In this study, we present an intercomparison of four different techniques for measuring the chemical composition of nanoparticles. The intercomparison was performed based on the observed chemical composition, calculated volatility, and analysis of the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Jiaoshi Zhang, Yang Wang, Steven Spielman, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 15, 2579–2590, https://doi.org/10.5194/amt-15-2579-2022, https://doi.org/10.5194/amt-15-2579-2022, 2022
Short summary
Short summary
New nonparametric, regularized methods are developed to invert the growth factor probability density function (GF-PDF) from humidity-controlled fast integrated mobility spectrometer measurements. These algorithms are computationally efficient, require no prior assumptions of the GF-PDF distribution, and reduce the error in inverted GF-PDF. They can be applied to humidified tandem differential mobility analyzer data. Among all algorithms, Twomey’s method retrieves GF-PDF with the smallest error.
Shenglun Wu, Hyung Joo Lee, Andrea Anderson, Shang Liu, Toshihiro Kuwayama, John H. Seinfeld, and Michael J. Kleeman
Atmos. Chem. Phys., 22, 4929–4949, https://doi.org/10.5194/acp-22-4929-2022, https://doi.org/10.5194/acp-22-4929-2022, 2022
Short summary
Short summary
An ozone control experiment usually conducted in the laboratory was installed in a trailer and moved to the outdoor environment to directly confirm that we are controlling the right sources in order to lower ambient ozone concentrations. Adding small amounts of precursor oxides of nitrogen and volatile organic compounds to ambient air showed that the highest ozone concentrations are best controlled by reducing concentrations of oxides of nitrogen. The results confirm satellite measurements.
Sophia M. Charan, Yuanlong Huang, Reina S. Buenconsejo, Qi Li, David R. Cocker III, and John H. Seinfeld
Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, https://doi.org/10.5194/acp-22-917-2022, 2022
Short summary
Short summary
In this study, we investigate the secondary organic aerosol formation potential of decamethylcyclopentasiloxane (D5), which is used as a tracer for volatile chemical products and measured in high concentrations both outdoors and indoors. By performing experiments in different types of reactors, we find that D5’s aerosol formation is highly dependent on OH, and, at low OH concentrations or exposures, D5 forms little aerosol. We also reconcile results from other studies.
Elyse A. Pennington, Karl M. Seltzer, Benjamin N. Murphy, Momei Qin, John H. Seinfeld, and Havala O. T. Pye
Atmos. Chem. Phys., 21, 18247–18261, https://doi.org/10.5194/acp-21-18247-2021, https://doi.org/10.5194/acp-21-18247-2021, 2021
Short summary
Short summary
Volatile chemical products (VCPs) are commonly used consumer and industrial items that contribute to the formation of atmospheric aerosol. We implemented the emissions and chemistry of VCPs in a regional-scale model and compared predictions with measurements made in Los Angeles. Our results reduced model bias and suggest that VCPs may contribute up to half of anthropogenic secondary organic aerosol in Los Angeles and are an important source of human-influenced particular matter in urban areas.
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Linhui Jiang, Yan Xia, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, and Shaocai Yu
Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021, https://doi.org/10.5194/acp-21-16985-2021, 2021
Short summary
Short summary
This paper establishes a bottom-up approach to reveal a unique pattern of urban on-road vehicle emissions at a spatial resolution 1–3 orders of magnitude higher than current inventories. The results show that the hourly average on-road vehicle emissions of CO, NOx, HC, and PM2.5 are 74 kg, 40 kg, 8 kg, and 2 kg, respectively. Integrating our traffic-monitoring-based approach with urban measurements, we could address major data gaps between urban air pollutant emissions and concentrations.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Yutong Liang, John Jayne, Susanne Hering, and Allen H. Goldstein
Atmos. Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, https://doi.org/10.5194/amt-14-6533-2021, 2021
Short summary
Short summary
cTAG is a new scientific instrument that measures concentrations of organic chemicals in the atmosphere. cTAG is the first instrument capable of measuring small, light chemicals as well as heavier chemicals and everything in between on a single detector, every hour. In this work we explain how cTAG works and some of the tests we performed to verify that it works properly and reliably. We also present measurements of alkanes that suggest they have three dominant sources in a Bay Area suburb.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Jiaoshi Zhang, Steven Spielman, Yang Wang, Guangjie Zheng, Xianda Gong, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021, https://doi.org/10.5194/amt-14-5625-2021, 2021
Short summary
Short summary
In this study, we present a newly developed instrument, the humidity-controlled fast integrated mobility spectrometer (HFIMS), for fast measurements of aerosol hygroscopic growth. The HFIMS can measure the distributions of particle hygroscopic growth factors at six diameters from 35 to 265 nm under five RH levels from 20 to 85 % within 25 min. The HFIMS significantly advances our capability of characterizing the hygroscopic growth of atmospheric aerosols over a wide range of relative humidities.
Stavros Amanatidis, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021, https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Short summary
We assess the performance of a highly portable mobility analyzer, the Spider DMA, in measuring ambient aerosol particle size distributions, with specific attention to its moderate sizing resolution (R=3). Long-term field testing showed excellent correlation with a conventional mobility analyzer (R=10) over the 17–500 nm range, suggesting that moderate resolution may be sufficient to obtain key properties of ambient size distributions, enabling smaller instruments and better counting statistics.
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021, https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Short summary
Atmospheric particle formation, emissions, and growth process rates are significant sources of uncertainty in predicting climate change. We aim to reduce that uncertainty by using measurements from several ground-based sites across Europe. We developed an estimation technique to adapt the governing process rates so model–measurement bias decays. The estimation framework developed has potential to improve model predictions while providing insight into the underlying atmospheric particle physics.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14597–14616, https://doi.org/10.5194/acp-20-14597-2020, https://doi.org/10.5194/acp-20-14597-2020, 2020
Short summary
Short summary
Wildfires have become increasingly prevalent. Intense smoke consisting of particulate matter (PM) leads to an increased risk of morbidity and mortality. The record-breaking Camp Fire ravaged Northern California for two weeks in 2018. Here, we employ a comprehensive chemical transport model along with ground-based and satellite observations to characterize the PM concentrations across Northern California and to investigate the pollution sensitivity predictions to key parameters of the model.
Sophia M. Charan, Reina S. Buenconsejo, and John H. Seinfeld
Atmos. Chem. Phys., 20, 13167–13190, https://doi.org/10.5194/acp-20-13167-2020, https://doi.org/10.5194/acp-20-13167-2020, 2020
Short summary
Short summary
In urban areas, the emissions from volatile chemical products may be responsible for the formation of as much particulate matter as motor vehicles. Since exposure to particulate matter is a public health crisis, understanding its formation is critical. In this work, we investigate the secondary organic aerosol formation potential of benzyl alcohol, an important compound that is representative of some of these new emission sources, and find that more particulate matter forms than is expected.
Martin Heinritzi, Lubna Dada, Mario Simon, Dominik Stolzenburg, Andrea C. Wagner, Lukas Fischer, Lauri R. Ahonen, Stavros Amanatidis, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, Antonio Dias, Josef Dommen, Jonathan Duplissy, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Manuel Granzin, Imad El Haddad, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Juha Kangasluoma, Timo Keber, Changhyuk Kim, Andreas Kürten, Houssni Lamkaddam, Tiia M. Laurila, Janne Lampilahti, Chuan Ping Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Vladimir Makhmutov, Hanna Elina Manninen, Ruby Marten, Serge Mathot, Roy Lee Mauldin, Bernhard Mentler, Ugo Molteni, Tatjana Müller, Wei Nie, Tuomo Nieminen, Antti Onnela, Eva Partoll, Monica Passananti, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti P. Rissanen, Clémence Rose, Siegfried Schobesberger, Wiebke Scholz, Kay Scholze, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, Miguel Vazquez-Pufleau, Annele Virtanen, Alexander L. Vogel, Rainer Volkamer, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Urs Baltensperger, Armin Hansel, Markku Kulmala, António Tomé, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 11809–11821, https://doi.org/10.5194/acp-20-11809-2020, https://doi.org/10.5194/acp-20-11809-2020, 2020
Short summary
Short summary
With experiments performed at CLOUD, we show how isoprene interferes in monoterpene oxidation via RO2 termination at atmospherically relevant concentrations. This interference shifts the distribution of highly oxygenated organic molecules (HOMs) away from C20 class dimers towards C15 class dimers, which subsequently reduces both biogenic nucleation and early growth rates. Our results may help to understand the absence of new-particle formation in isoprene-rich environments.
James F. Hurley, Nathan M. Kreisberg, Braden Stump, Chenyang Bi, Purushottam Kumar, Susanne V. Hering, Pat Keady, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 13, 4911–4925, https://doi.org/10.5194/amt-13-4911-2020, https://doi.org/10.5194/amt-13-4911-2020, 2020
Short summary
Short summary
The chemical composition of aerosols has implications for human and ecosystem health. Current methods for determining chemical composition are expensive and require highly trained personnel. Our method is promising for moderate-cost, low-maintenance measurements of oxygen / carbon ratios, a key chemical parameter, and other elements may also be studied. In this work, we coupled two commonly used detectors to assess O / C ratios in a variety of compounds and mixtures within an acceptable error.
Cited articles
Amanatidis, S., Kim, C., Spielman, S. R., Lewis, G. S., Hering, S. V., and
Flagan, R. C.: The Spider DMA: A miniature radial differential mobility analyzer, Aerosol Sci. Technol., 54, 175–189,
https://doi.org/10.1080/02786826.2019.1626974, 2020. a
Bonn, B. and Moortgat, G. K.: Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons, Geophys. Res. Lett., 30, 1585, https://doi.org/10.1029/2003GL017000, 2003. a
Bracewell, R. N. and Bracewell, R. N.: The Fourier transform and its
applications, 2nd edn., vol. 31999, McGraw-Hill, New York, USA, 1986. a
Brown, L. M., Collings, N., Harrison, R. M., Maynard, A. D., Maynard, R. L.,
Kim, C. S., and Jaques, P. A.: Respiratory dose of inhaled ultrafine
particles in healthy adults, Philos. Trans. R. Soc. A, 358, 2693–2705,
https://doi.org/10.1098/rsta.2000.0678, 2000. a
Brunelli, N. A., Flagan, R. C., and Giapis, K. P.: Radial differential
mobility analyzer for one nanometer particle classification,
Aerosol Sci. Technol., 43, 53–59, https://doi.org/10.1080/02786820802464302, 2009. a, b
Chen, D. R., Pui, D. Y. H., Hummes, D., Fissan, H., Quant, F. R., and Sem,
G. J.: Design and evaluation of a nanometer aerosol differential mobility
analyzer (Nano-DMA), J. Aerosol Sci., 29, 497–509,
https://doi.org/10.1016/S0021-8502(97)10018-0, 1998. a
Chen, X., McMurry, P. H., and Jiang, J.: Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers, Aerosol Sci. Technol., 52, 809–813,
https://doi.org/10.1080/02786826.2018.1479058, 2018. a
Collins, D. R., Flagan, R. C., and Seinfeld, J. H.: Improved inversion of
scanning DMA data, Aerosol Sci. Technol., 36, 1–9,
https://doi.org/10.1080/027868202753339032, 2002. a, b
Collins, D. R., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.: The
scanning DMA transfer function, Aerosol Sci. Technol., 38, 833–850,
https://doi.org/10.1080/027868290503082, 2004. a, b
Dall'Osto, M., Beddows, D. C. S., Tunved, P., Krejci, R., Ström, J.,
Hansson, H.-C., Yoon, Y. J., Park, K.-T., Becagli, S., Udisti, R., Onasch,
T., O´Dowd, C. D., Simó, R., and Harrison, R. M.: Arctic sea ice melt
leads to atmospheric new particle formation, Sci. Rep., 7, 1–10,
https://doi.org/10.1038/s41598-017-03328-1, 2017. a
Downard, A. J., Dama, J. F., and Flagan, R. C.: An asymptotic analysis of
differential electrical mobility classifiers, Aerosol Sci. Technol.,
45, 727–739, https://doi.org/10.1080/02786826.2011.558136, 2011. a, b
Dubey, P. and Dhaniyala, S.: A new approach to calculate diffusional
transfer functions of scanning DMAs, Aerosol Sci. Technol., 45,
1031–1040, https://doi.org/10.1080/02786826.2011.579644, 2011. a
Dunn, M. J., Jiménez, J.-L., Baumgardner, D., Castro, T., McMurry, P. H.,
and Smith, J. N.: Measurements of Mexico City nanoparticle size
distributions: Observations of new particle formation and growth, Geophys.
Res. Lett., 31, L10102, https://doi.org/10.1029/2004GL019483, 2004. a
Fissan, H. J., Helsper, C., and Thielen, H. J.: Determination of particle size distributions by means of an electrostatic classifier, J. Aerosol Sci., 14, 354–357, https://doi.org/10.1016/0021-8502(83)90133-7, 1983. a
Flagan, R. C.: History of electrical aerosol measurements, Aerosol Sci.
Technol., 28, 301–380, https://doi.org/10.1080/02786829808965530, 1998. a
Flagan, R. C.: On differential mobility analyzer resolution, Aerosol
Sci. Technol., 30, 556–570, https://doi.org/10.1080/027868299304417, 1999. a, b, c
Gamero-Castano, M. and de la Mora, J.: A condensation nucleus counter (CNC)
sensitive to singly charged sub-nanometer particles, J. Aerosol Sci., 31,
757–772, https://doi.org/10.1016/S0021-8502(99)00555-8, 2000. a
Gordon, H., Kirkby, J., Baltensperger, U., Bianchi, F., Breitenlechner, M.,
Curtius, J., Dias, A., Dommen, J., Donahue, N. M., Dunne, E. M., Duplissy,
J., Ehrhart, S., Flagan, R. C., Frege, C., Fuchs, C., Hansel, A., Hoyle,
C. R., Kulmala, M., Kürten, A., Lehtipalo, K., Makhmutov, V., Molteni,
U., Rissanen, M. P., Stozkhov, Y., Tröstl, J., Tsagkogeorgas, G., Wagner,
R., Williamson, C., Wimmer, D., Winkler, P. M., Yan, C., and Carslaw, K. S.:
Causes and importance of new particle formation in the present-day and
preindustrial atmospheres, J. Geophys. Res.-Atmos., 122, 8739–8760,
https://doi.org/10.1002/2017JD026844, 2017. a
Hering, S. V., Lewis, G. S., Spielman, S. R., and Eiguren-Fernandez, A.: A
MAGIC concept for self-sustained, water-based, ultrafine particle counting,
Aerosol Sci. Technol., 53, 63–72, https://doi.org/10.1080/02786826.2018.1538549, 2019. a, b
Iida, K., Stolzenburg, M. R., and McMurry, P. H.: Effect of working fluid
on sub-2 nm particle detection with a laminar flow ultrafine
condensation particle counter, Aerosol Sci. Technol., 43, 81–96,
https://doi.org/10.1080/02786820802488194, 2009. a, b
Jiang, J., Chen, M., Kuang, C., and Attoui, M.: Electrical mobility
spectrometer using diethylene glycol condensation particle counter for
measuring aeerosol size distributions down to 1 nm, Aerosol Sci. Technol., 45, 510–521, https://doi.org/10.1080/02786826.2010.546817, 2011a. a, b, c
Jiang, J., Chen, M., Eisele, F. L., Scheckman, J., Williams, B. J., Kuang, C., and McMurry, P. H.: First measurements of neutral atmospheric cluster and 1–2 nm particle number size distributions during nucleation events, Aerosol
Sci. Technol., 45, 2–5, https://doi.org/10.1080/02786826.2010.546817, 2011b. a
Kangasluoma, J., Junninen, H., Lehtipalo, K., Mikkilä, J., Vanhanen, J., Attoui, M., Sipilä, M., Worsnop, D., Kulmala, M., and Petäjä,
T.: Remarks on Ion Generation for CPC Detection Efficiency Studies in the
Sub-1-nm Size Range, Aerosol Sci. Technol., 47, 556–563,
https://doi.org/10.1080/02786826.2013.773393, 2013. a, b
Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., and
Bianchi, F.: Atmospheric new particle formation and growth: review of field
observations, Environ. Res. Lett., 13, 103003,
https://doi.org/10.1088/1748-9326/aadf3c, 2018. a
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,
Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger,
A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer,
D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J.,
Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D., Jud,
W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo, K.,
Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J.,
Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P.,
Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M.,
Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y.,
Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler,
P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.:
Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric
aerosol nucleation, Nature, 476, 429–433, https://doi.org/10.1038/nature10343, 2011. a
Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Tröstl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A.-K.,
Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A.,
Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J.,
Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf, M.,
Kürten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S.,
Molteni, U., Onnela, A., Peräkylä, O., Piel, F., Petäjä, T.,
Praplan, A. P., Pringle, K., Rap, A., Richards, N. A. D., Riipinen, I.,
Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E.,
Seinfeld, J. H., Sipilä, M., Steiner, G., Stozhkov, Y., Stratmann, F.,
Tomé, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E.,
Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A.,
Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M.,
Carslaw, K. S., and Curtius, J.: Ion-induced nucleation of pure biogenic
particles, Nature, 533, 521–526, https://doi.org/10.1038/nature17953, 2016. a, b
Knutson, E. O. and Whitby, K. T.: Aerosol classification by electric mobility: apparatus, theory, and applications, J. Aerosol Sci., 6, 443–451,
https://doi.org/10.1016/0021-8502(75)90060-9, 1975. a
Kousaka, Y., Niida, T., Okuyama, K., and Tanaka, H.: Development of a mixing
type condensation nucleus counter, J. Aerosol Sci., 13, 231–240,
https://doi.org/10.1016/0021-8502(82)90064-7, 1982. a
Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen,
V.-M., Birmili, W., and McMurry, P.: Formation and growth rates of ultrafine
atmospheric particles: A review of observations, J. Aerosol Sci., 35,
143–176, https://doi.org/10.1016/j.jaerosci.2003.10.003, 2004. a
Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang,
R.: New particle formation in the atmosphere: From molecular
clusters to global climate, J. Geophys. Res.-Atmos., 124, 7098–7146,
https://doi.org/10.1029/2018JD029356, 2019. a
Mai, H. and Flagan, R. C.: Scanning DMA data analysis I.
Classification transfer function, Aerosol Sci. Technol., 52,
1382–1399, https://doi.org/10.1080/02786826.2018.1528005, 2018. a, b
Mai, H., Kong, W., Seinfeld, J. H., and Flagan, R. C.: Scanning DMA data
analysis II. Integrated DMA-CPC instrument response and data
inversion, Aerosol Sci. Technol., 52, 1400–1414,
https://doi.org/10.1080/02786826.2018.1528006, 2018. a, b, c, d
Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmos. Chem. Phys., 9, 8601–8616, https://doi.org/10.5194/acp-9-8601-2009, 2009. a
Merritt, M. and Zhang, Y.: Interior-point gradient method for
large-scale totally nonnegative least squares problems, J.
Optim. Theory Appl., 126, 191–202, https://doi.org/10.1007/s10957-005-2668-z, 2005. a
O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H.,
Hämeri, K., Pirjola, L., Kulmala, M., Jennings, S. G., and Hoffmann, T.:
Marine aerosol formation from biogenic iodine emissions, Nature, 417,
632–636, https://doi.org/10.1038/nature00775, 2002. a
Okuyama, K., Kousaka, Y., and Motouchi, T.: Condensational growth of ultrafine aerosol particles in a new particle size magnifier, Aerosol Sci. Technol., 3, 353–366, https://doi.org/10.1080/02786828408959024, 1984. a
Paasonen, P., Nieminen, T., Asmi, E., Manninen, H. E., Petäjä, T., Plass-Dülmer, C., Flentje, H., Birmili, W., Wiedensohler, A., Hõrrak, U., Metzger, A., Hamed, A., Laaksonen, A., Facchini, M. C., Kerminen, V.-M., and Kulmala, M.: On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation, Atmos. Chem. Phys., 10, 11223–11242, https://doi.org/10.5194/acp-10-11223-2010, 2010. a
Peineke, C., Attoui, M., and Schmidt-Ott, A.: Using a glowing wire generator
for production of charged, uniformly-sized nanoparticles at high
concentrations, J. Aerosol Sci., 37, 1651–1661,
https://doi.org/10.1016/j.jaerosci.2006.06.006, 2006. a, b
Quant, F. R., Caldow, R., Sem, G. J., and Addison, T. J.: Performance of
condensation particle counters with three continuous-flow designs, J. Aerosol
Sci., 23, 405–408, https://doi.org/10.1016/0021-8502(92)90435-X, 1992. a
Rader, D. J. and McMurry, P. H.: Application of the tandem differential
mobility analyzer to studies of droplet growth or evaporation, J. Aerosol
Sci., 17, 771–787, https://doi.org/10.1016/0021-8502(86)90031-5, 1986. a, b
Rosell-Llompart, J., Loscertales, I. G., Bingham, D., and de la Mora, J. F.:
Sizing nanoparticles and ions with a short differential mobility analyzer, J.
Aerosol Sci., 27, 695–719, https://doi.org/10.1016/0021-8502(96)00016-X, 1996. a
Russell, L. M., Flagan, R. C., and Seinfeld, J. H.: Asymmetric instrument
response resulting from mixing effects in accelerated DMA-CPC
measurements, Aerosol Sci. Technol., 23, 491–509,
https://doi.org/10.1080/02786829508965332, 1995. a, b
Sgro, L. A. and de la Mora, J. F.: A simple turbulent mixing CNC for
charged particle detection down to 1.2 nm, Aerosol Sci. Technol., 38, 1–11, https://doi.org/10.1080/02786820490247560, 2004. a, b
Shah, S. D. and Cocker, D. R.: A fast scanning mobility particle
spectrometer for monitoring transient particle size
distributions, Aerosol Sci. Technol., 39, 519–526,
https://doi.org/10.1080/027868291004652, 2005. a
Steiner, G., Jokinen, T., Junninen, H., Sipilä, M., Petäjä, T.,
Worsnop, D., Reischl, G. P., and Kulmala, M.: High-resolution mobility
and mass spectrometry of negative ions produced in a 241Am
aerosol charger, Aerosol Sci. Technol., 48, 261–270,
https://doi.org/10.1080/02786826.2013.870327, 2014. a
Stolzenburg, D., Steiner, G., and Winkler, P. M.: A DMA-train for precision measurement of sub-10 nm aerosol dynamics, Atmos. Meas. Tech., 10, 1639–1651, https://doi.org/10.5194/amt-10-1639-2017, 2017. a, b
Stolzenburg, M. R. and McMurry, P. H.: Equations governing single and
tandem DMA configurations and a new lognormal approximation to
the transfer function, Aerosol Sci. Technol., 42, 421–432,
https://doi.org/10.1080/02786820802157823, 2008. a
Tröstl, J., Tritscher, T., Bischof, O. F., Horn, H.-G., Krinke, T.,
Baltensperger, U., and Gysel, M.: Fast and precise measurement in the sub-20 nm size range using a Scanning Mobility Particle Sizer, J. Aerosol
Sci., 87, 75–87, https://doi.org/10.1016/j.jaerosci.2015.04.001, 2015. a, b
Ude, S. and de la Mora, J. F.: Molecular monodisperse mobility and mass
standards from electrosprays of tetra-alkyl ammonium halides, J. Aerosol
Sci., 36, 1224–1237, https://doi.org/10.1016/j.jaerosci.2005.02.009, 2005. a
Wagner, R., Yan, C., Lehtipalo, K., Duplissy, J., Nieminen, T., Kangasluoma, J., Ahonen, L. R., Dada, L., Kontkanen, J., Manninen, H. E., Dias, A., Amorim, A., Bauer, P. S., Bergen, A., Bernhammer, A.-K., Bianchi, F., Brilke, S., Mazon, S. B., Chen, X., Draper, D. C., Fischer, L., Frege, C., Fuchs, C., Garmash, O., Gordon, H., Hakala, J., Heikkinen, L., Heinritzi, M., Hofbauer, V., Hoyle, C. R., Kirkby, J., Kürten, A., Kvashnin, A. N., Laurila, T., Lawler, M. J., Mai, H., Makhmutov, V., Mauldin III, R. L., Molteni, U., Nichman, L., Nie, W., Ojdanic, A., Onnela, A., Piel, F., Quéléver, L. L. J., Rissanen, M. P., Sarnela, N., Schallhart, S., Sengupta, K., Simon, M., Stolzenburg, D., Stozhkov, Y., Tröstl, J., Viisanen, Y., Vogel, A. L., Wagner, A. C., Xiao, M., Ye, P., Baltensperger, U., Curtius, J., Donahue, N. M., Flagan, R. C., Gallagher, M., Hansel, A., Smith, J. N., Tomé, A., Winkler, P. M., Worsnop, D., Ehn, M., Sipilä, M., Kerminen, V.-M., Petäjä, T., and Kulmala, M.: The role of ions in new particle formation in the CLOUD chamber, Atmos. Chem. Phys., 17, 15181–15197, https://doi.org/10.5194/acp-17-15181-2017, 2017. a
Wang, J., McNeill, V. F., Collins, D. R., and Flagan, R. C.: Fast mixing
condensation nucleus counter: Application to rapid scanning
differential mobility analyzer measurements, Aerosol Sci. Technol.,
36, 678–689, https://doi.org/10.1080/02786820290038366, 2002. a
Wang, M., Kong, W., Marten, R., He, X.-C., Chen, D., Pfeifer, J., Heitto, A.,
Kontkanen, J., Dada, L., Kürten, A., Yli-Juuti, T., Manninen, H. E.,
Amanatidis, S., Amorim, A., Baalbaki, R., Baccarini, A., Bell, D. M.,
Bertozzi, B., Bräkling, S., Brilke, S., Murillo, L. C., Chiu, R., Chu,
B., De Menezes, L.-P., Duplissy, J., Finkenzeller, H., Carracedo, L. G.,
Granzin, M., Guida, R., Hansel, A., Hofbauer, V., Krechmer, J., Lehtipalo,
K., Lamkaddam, H., Lampimäki, M., Lee, C. P., Makhmutov, V., Marie, G.,
Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., Onnela, A., Partoll,
E., Petäjä, T., Philippov, M., Pospisilova, V., Ranjithkumar, A.,
Rissanen, M., Rörup, B., Scholz, W., Shen, J., Simon, M., Sipilä, M.,
Steiner, G., Stolzenburg, D., Tham, Y. J., Tomé, A., Wagner, A. C., Wang,
D. S., Wang, Y., Weber, S. K., Winkler, P. M., Wlasits, P. J., Wu, Y., Xiao,
M., Ye, Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I.,
Dommen, J., Curtius, J., Baltensperger, U., Kulmala, M., Worsnop, D. R.,
Kirkby, J., Seinfeld, J. H., El-Haddad, I., Flagan, R. C., and Donahue,
N. M.: Rapid growth of new atmospheric particles by nitric acid and ammonia
condensation, Nature, 581, 184–189, https://doi.org/10.1038/s41586-020-2270-4, 2020. a, b, c, d, e, f
Wang, S. C. and Flagan, R. C.: Scanning electrical mobility spectrometer, Aerosol Sci. Technol., 13, 230–240, https://doi.org/10.1080/02786829008959441, 1990. a
Wang, Z., Wu, Z., Yue, D., Shang, D., Guo, S., Sun, J., Ding, A., Wang, L.,
Jiang, J., Guo, H., Gao, J., Cheung, H. C., Morawska, L., Keywood, M., and
Hu, M.: New particle formation in China: Current knowledge and further
directions, Sci. Total Environ., 577, 258–266,
https://doi.org/10.1016/j.scitotenv.2016.10.177, 2017.
a
Wiedensohler, A.: An approximation of the bipolar charge distribution for
particles in the submicron size range, J. Aerosol Sci., 19, 387–389,
https://doi.org/10.1016/0021-8502(88)90278-9, 1988. a, b
Winklmayr, W., Reischl, G. P., Lindner, A. O., and Berner, A.: A new
electromobility spectrometer for the measurement of aerosol size
distributions in the size range from 1 to 1000 nm, J. Aerosol Sci., 22,
289–296, https://doi.org/10.1016/S0021-8502(05)80007-2, 1991. a
Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V.-M., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang, L.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity, Science, 361, 278–281, https://doi.org/10.1126/science.aao4839, 2018. a
Zhang, S.-H., Akutsu, Y., Russell, L. M., Flagan, R. C., and Seinfeld, J. H.:
Radial differential mobility analyzer, Aerosol Sci. Technol., 23,
357–372, https://doi.org/10.1080/02786829508965320, 1995. a, b
Short summary
We present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS has proven to be extremely powerful in examining atmospheric nucleation and the subsequent growth of nanoparticles in the CERN CLOUD experiment, which provides a valuable asset to study atmospheric nanoparticles and to evaluate their impact on climate.
We present the design, modeling, and experimental characterization of the nano-scanning...
Special issue