Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7435-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7435-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry
Xingou Xu
The CAS Key Laboratory of Microwave Remote Sensing, National Space
Science Center, Chinese Academy of Sciences, Beijing, 100190, China
Satellite Observations, Royal Netherlands Meteorology Institute, De Bilt, 3730 AE, the
Netherlands
Related authors
No articles found.
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-33, https://doi.org/10.5194/wes-2023-33, 2023
Preprint under review for WES
Short summary
Short summary
Wind farms at sea are becoming more densely clustered, which means that, next to individual wind turbines interfering with each other in a single power plant, also interference between wind farms becomes important. Using a climate model, this study shows that the efficiency of wind farm clusters and the interference between the wind farms in the cluster depend strongly on the properties of the individual wind farms and is also highly sensitive to the spacing between the wind farms.
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022, https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Short summary
The Aeolus satellite was launched in 2018 for global wind profile measurement. After successful operation, the error characteristics of Aeolus wind products have not yet been studied over Australia. To complement earlier validation studies, we evaluated the Aeolus Level-2B11 wind product over Australia with ground-based wind profiling radar measurements and numerical weather prediction model equivalents. The results show that the Aeolus can detect winds with sufficient accuracy over Australia.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26, https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary
Short summary
Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is the comparison of wind speed on a large scale between the Aeolus, ERA5 and RS , shedding important light on the data application of Aeolus wind products.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China have thus far not been evaluated by in situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future research and applications.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-41, https://doi.org/10.5194/acp-2021-41, 2021
Revised manuscript not accepted
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future researches and applications.
Zhen Li, Ad Stoffelen, and Anton Verhoef
Atmos. Meas. Tech., 12, 3573–3594, https://doi.org/10.5194/amt-12-3573-2019, https://doi.org/10.5194/amt-12-3573-2019, 2019
Short summary
Short summary
This paper presents a generic simulation rotating-beam scatterometer scheme, which includes pencil-beam and fan-beam instruments. SCAT (CFOSAT), WindRAD, and SeaWinds are chosen to represent the current or near-future rotating-beam scatterometers. Their capacity for wind retrieval and figures of merit are analyzed and compared with each other. Increasing the number of views is able to improve the wind retrieval, but the improvement also can reach saturation with even more views.
Maria Belmonte Rivas and Ad Stoffelen
Ocean Sci., 15, 831–852, https://doi.org/10.5194/os-15-831-2019, https://doi.org/10.5194/os-15-831-2019, 2019
Short summary
Short summary
This paper describes the differences between ocean surface winds provided by ERA reanalyses and satellite scatterometer observations. This work is motivated by the widespread use of reanalysis winds for ocean forcing in marine forecasting centers and the application of observations to characterize reanalysis wind errors, which we conjecture are related to deficiencies in the physics of the underlying assimilating model (insufficient wind variability at high spatial and temporal frequencies).
Maria Belmonte Rivas, Ines Otosaka, Ad Stoffelen, and Anton Verhoef
The Cryosphere, 12, 2941–2953, https://doi.org/10.5194/tc-12-2941-2018, https://doi.org/10.5194/tc-12-2941-2018, 2018
Short summary
Short summary
We provide a novel record of scatterometer sea ice extents and backscatter that complements the passive microwave products nicely, particularly for the correction of summer melt errors. The sea ice backscatter maps help differentiate between seasonal and perennial Arctic ice classes, and between second-year and older multiyear ice, revealing the emergence of SY ice as the dominant perennial ice type after the record loss in 2007 and attesting to its use as a proxy for ice thickness.
S. H. Alemohammad, K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen
Hydrol. Earth Syst. Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015, https://doi.org/10.5194/hess-19-3489-2015, 2015
Short summary
Short summary
This paper introduces a new variant of the triple collocation technique with multiplicative error model. The method is applied, for the first time, to precipitation products across the central part of continental USA. Results show distinctive patterns of error variance in each product that are estimated without a priori assumption of any of the error distributions. The correlation coefficients between each product and the truth are also estimated, which provides another performance perspective.
X. J. Sun, R. W. Zhang, G. J. Marseille, A. Stoffelen, D. Donovan, L. Liu, and J. Zhao
Atmos. Meas. Tech., 7, 2695–2717, https://doi.org/10.5194/amt-7-2695-2014, https://doi.org/10.5194/amt-7-2695-2014, 2014
G.-J. van Zadelhoff, A. Stoffelen, P. W. Vachon, J. Wolfe, J. Horstmann, and M. Belmonte Rivas
Atmos. Meas. Tech., 7, 437–449, https://doi.org/10.5194/amt-7-437-2014, https://doi.org/10.5194/amt-7-437-2014, 2014
W. Lin, M. Portabella, A. Stoffelen, and A. Verhoef
Atmos. Meas. Tech., 6, 1053–1060, https://doi.org/10.5194/amt-6-1053-2013, https://doi.org/10.5194/amt-6-1053-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path
Observations of anomalous propagation over waters near Sweden
Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
High-resolution 3D winds derived from a modified WISSDOM synthesis scheme using multiple Doppler lidars and observations
Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations
Assessing and mitigating the radar–radar interference in the German C-band weather radar network
Spectral replacement using machine learning methods for continuous mapping of the Geostationary Environment Monitoring Spectrometer (GEMS)
Doppler spectra from DWD's operational C-band radar birdbath scan: sampling strategy, spectral postprocessing, and multimodal analysis for the retrieval of precipitation processes
High-fidelity retrieval from instantaneous line-of-sight returns of nacelle-mounted lidar including supervised machine learning
Horizontal small-scale variability of water vapor in the atmosphere: implications for intercomparison of data from different measuring systems
Satellite observations of gravity wave momentum flux in the mesosphere and lower thermosphere (MLT): feasibility and requirements
An improved near-real-time precipitation retrieval for Brazil
Efficient Collocation of GNSS Radio Occultation Soundings with Passive Nadir Microwave Soundings
Radio frequency interference detection and mitigation in the DWD C-band weather radar network
Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign
Long-distance propagation of 162 MHz shipping information links associated with sporadic E
Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts
DeepPrecip: a deep neural network for precipitation retrievals
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Meteor radar vertical wind observation biases and mathematical debiasing strategies including the 3DVAR+DIV algorithm
Adaptive thermal image velocimetry of spatial wind movement on landscapes using near-target infrared cameras
Image muting of mixed precipitation to improve identification of regions of heavy snow in radar data
Extending water vapor measurement capability of photon-limited differential absorption lidars through simultaneous denoising and inversion
GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
Sensitivity analysis of DSD retrievals from polarimetric radar in stratiform rain based on the μ–Λ relationship
On the use of high-frequency surface wave oceanographic research radars as bistatic single-frequency oblique ionospheric sounders
Estimation of extreme precipitations in Estonia and Italy using dual-pol weather radar QPEs
A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System
Hierarchical deconvolution for incoherent scatter radar data
An alternative cloud index for estimating downwelling surface solar irradiance from various satellite imagers in the framework of a Heliosat-V method
ERUO: a spectral processing routine for the Micro Rain Radar PRO (MRR-PRO)
On the derivation of zonal and meridional wind components from Aeolus horizontal line-of-sight wind
Quantification of lightning-produced NOx over the Pyrenees and the Ebro Valley by using different TROPOMI-NO2 and cloud research products
Sensitivity analysis of attenuation in convective rainfall at X-band frequency using the mountain reference technique
A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements
Airborne measurements of directional reflectivity over the Arctic marginal sea ice zone
High-resolution typhoon precipitation integrations using satellite infrared observations and multisource data
Continuous temperature soundings at the stratosphere and lower mesosphere with a ground-based radiometer considering the Zeeman effect
Retrieval of solar-induced chlorophyll fluorescence (SIF) from satellite measurements: comparison of SIF between TanSat and OCO-2
Identification of tropical cyclones via deep convolutional neural network based on satellite cloud images
Time evolution of temperature profiles retrieved from 13 years of infrared atmospheric sounding interferometer (IASI) data using an artificial neural network
Emissivity retrievals with FORUM's end-to-end simulator: challenges and recommendations
Detecting wave features in Doppler radial velocity radar observations
Remote sensing of solar surface radiation – a reflection of concepts, applications and input data based on experience with the effective cloud albedo
Snow microphysical retrieval from the NASA D3R radar during ICE-POP 2018
Retrieval improvements for the ALADIN Airborne Demonstrator in support of the Aeolus wind product validation
Cloud-probability-based estimation of black-sky surface albedo from AVHRR data
A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations
Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): retrieval framework and first results
Vinícius Ludwig-Barbosa, Joel Rasch, Thomas Sievert, Anders Carlström, Mats I. Pettersson, Viet Thuy Vu, and Jacob Christensen
Atmos. Meas. Tech., 16, 1849–1864, https://doi.org/10.5194/amt-16-1849-2023, https://doi.org/10.5194/amt-16-1849-2023, 2023
Short summary
Short summary
In this paper, the back-propagation method's capabilities and limitations regarding the location of irregularity regions in the ionosphere, e.g. equatorial plasma bubbles, are evaluated. The assessment was performed with simulations in which different scenarios were assumed. The results showed that the location estimate is possible if the amplitude of the ionospheric disturbance is stronger than the instrument noise level. Further, multiple patches can be located if regions are well separated.
Lars Norin
Atmos. Meas. Tech., 16, 1789–1801, https://doi.org/10.5194/amt-16-1789-2023, https://doi.org/10.5194/amt-16-1789-2023, 2023
Short summary
Short summary
The atmosphere can cause radar beams to bend more or less towards the ground. When the atmosphere differs from standard atmospheric conditions, the propagation is considered anomalous. Radars affected by anomalous propagation can observe ground clutter far beyond the radar horizon. Here, 4.5 years' worth of data from five operational Swedish weather radars are presented. Analyses of the data reveal a strong seasonal cycle and weaker diurnal cycle in ground clutter from across nearby waters.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Chia-Lun Tsai, Kwonil Kim, Yu-Chieng Liou, and GyuWon Lee
Atmos. Meas. Tech., 16, 845–869, https://doi.org/10.5194/amt-16-845-2023, https://doi.org/10.5194/amt-16-845-2023, 2023
Short summary
Short summary
Since the winds in clear-air conditions usually play an important role in the initiation of various weather systems and phenomena, the modified Wind Synthesis System using Doppler Measurements (WISSDOM) synthesis scheme was developed to derive high-quality and high-spatial-resolution 3D winds under clear-air conditions. The performance and accuracy of derived 3D winds from this modified scheme were evaluated with an extreme strong wind event over complex terrain in Pyeongchang, South Korea.
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Short summary
Profile observations of the atmospheric boundary layer now allow for layer heights and characteristics to be derived at high temporal and vertical resolution. With novel high-density ground-based remote-sensing measurement networks emerging, horizontal information content is also increasing. This review summarises the capabilities and limitations of various sensors and retrieval algorithms which need to be considered during the harmonisation of data products for high-impact applications.
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023, https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary
Short summary
Weather radar data are the backbone of a lot of meteorological products. In order to obtain a better low-level coverage with radar data, additional systems have to be included. The frequency range in which radars are allowed to operate is limited. A potential radar-to-radar interference has to be avoided. The paper derives guidelines on how additional radars can be included into a C-band weather radar network and how interferences can be avoided.
Yeeun Lee, Myoung-Hwan Ahn, Mina Kang, and Mijin Eo
Atmos. Meas. Tech., 16, 153–168, https://doi.org/10.5194/amt-16-153-2023, https://doi.org/10.5194/amt-16-153-2023, 2023
Short summary
Short summary
This study aims to verify that a partly defective hyperspectral measurement can be successfully reproduced with concise machine learning models coupled with principal component analysis. Evaluation of the approach is performed with radiances and retrieval results of ozone and cloud properties. Considering that GEMS is the first geostationary UV–VIS hyperspectral spectrometer, we expect our findings can be introduced further to similar geostationary environmental instruments to be launched soon.
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022, https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary
Short summary
This study presents the new vertically pointing birdbath scan of the German C-band radar network, which provides high-resolution profiles of precipitating clouds above all DWD weather radars since the spring of 2021. Our AI-based postprocessing method for filtering and analyzing the recorded radar data offers a unique quantitative view into a wide range of precipitation events from snowfall over stratiform rain to intense frontal showers and will be used to complement DWD's operational services.
Kenneth A. Brown and Thomas G. Herges
Atmos. Meas. Tech., 15, 7211–7234, https://doi.org/10.5194/amt-15-7211-2022, https://doi.org/10.5194/amt-15-7211-2022, 2022
Short summary
Short summary
The character of the airflow around and within wind farms has a significant impact on the energy output and longevity of the wind turbines in the farm. For both research and control purposes, accurate measurements of the wind speed are required, and these are often accomplished with remote sensing devices. This article pertains to a field experiment of a lidar mounted to a wind turbine and demonstrates three data post-processing techniques with efficacy at extracting useful airflow information.
Xavier Calbet, Cintia Carbajal Henken, Sergio DeSouza-Machado, Bomin Sun, and Tony Reale
Atmos. Meas. Tech., 15, 7105–7118, https://doi.org/10.5194/amt-15-7105-2022, https://doi.org/10.5194/amt-15-7105-2022, 2022
Short summary
Short summary
Water vapor concentration in the atmosphere at small scales (< 6 km) is considered. The measurements show Gaussian random field behavior following Kolmogorov's theory of turbulence two-thirds law. These properties can be useful when estimating the water vapor variability within a given observed satellite scene or when different water vapor measurements have to be merged consistently.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel A. Vila, and Alan J. P. Calheiros
Atmos. Meas. Tech., 15, 6907–6933, https://doi.org/10.5194/amt-15-6907-2022, https://doi.org/10.5194/amt-15-6907-2022, 2022
Short summary
Short summary
We used methods from the field of artificial intelligence to train an algorithm to estimate rain from satellite observations. In contrast to other methods, our algorithm not only estimates rain, but also the uncertainty of the estimate. Using independent measurements from rain gauges, we show that our method performs better than currently available methods and that the provided uncertainty estimates are reliable. Our method makes satellite-based measurements of rain more accurate and reliable.
Alex Meredith, Stephen S. Leroy, and Kerri Cahoy
EGUsphere, https://doi.org/10.5194/egusphere-2022-1266, https://doi.org/10.5194/egusphere-2022-1266, 2022
Short summary
Short summary
We developed a new efficient algorithm leveraging orbital dynamics to collocate radio occultation soundings with microwave radiance soundings. This new algorithm is 99 % accurate and is much faster than traditional collocation-finding approaches. Speeding up collocation-finding is useful for calibrating and validating microwave radiometers and for data assimilation into numerical weather prediction models. Our algorithm can also be used to predict collocation yield for new satellite missions.
Maximilian Schaper, Michael Frech, David Michaelis, Cornelius Hald, and Benjamin Rohrdantz
Atmos. Meas. Tech., 15, 6625–6642, https://doi.org/10.5194/amt-15-6625-2022, https://doi.org/10.5194/amt-15-6625-2022, 2022
Short summary
Short summary
C-band weather radar data are commonly compromised by radio frequency interference (RFI) from external sources. It is not possible to separate a superimposed interference signal from the radar data. Therefore, the best course of action is to shut down RFI sources as quickly as possible. An automated RFI detection algorithm has been developed. Since its implementation, persistent RFI sources are eliminated much more quickly, while the number of short-lived RFI sources keeps steadily increasing.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Alex T. Chartier, Thomas R. Hanley, and Daniel J. Emmons
Atmos. Meas. Tech., 15, 6387–6393, https://doi.org/10.5194/amt-15-6387-2022, https://doi.org/10.5194/amt-15-6387-2022, 2022
Short summary
Short summary
This is a study of anomalous long-distance (>1000 km) radio propagation that was identified in United States Coast Guard monitors of automatic identification system (AIS) shipping transmissions at 162 MHz. Our results indicate this long-distance propagation is caused by dense sporadic E layers in the daytime ionosphere, which were observed by nearby ionosondes at the same time. This finding is surprising because it indicates these sporadic E layers may be far more dense than previously thought.
Johannes K. Nielsen, Hans Gleisner, Stig Syndergaard, and Kent B. Lauritsen
Atmos. Meas. Tech., 15, 6243–6256, https://doi.org/10.5194/amt-15-6243-2022, https://doi.org/10.5194/amt-15-6243-2022, 2022
Short summary
Short summary
This paper provides a new way to estimate uncertainties and error correlations. The method is a generalization of a known method called the
three-cornered hat: Instead of calculating uncertainties from assumed knowledge about the observation method, uncertainties and error correlations are estimated statistically from tree independent observation series, measuring the same variable. The results are useful for future estimation of atmospheric-specific humidity from the bending of radio waves.
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022, https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary
Short summary
Under warmer global temperatures, precipitation patterns are expected to shift substantially, with critical impact on the global water-energy budget. In this work, we develop a deep learning model for predicting snow and rain accumulation based on surface radar observations of the lower atmosphere. Our model demonstrates improved skill over traditional methods and provides new insights into the regions of the atmosphere that provide the most significant contributions to high model accuracy.
Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller
Atmos. Meas. Tech., 15, 5821–5839, https://doi.org/10.5194/amt-15-5821-2022, https://doi.org/10.5194/amt-15-5821-2022, 2022
Short summary
Short summary
This study develops an innovative approach for the detection and prediction of foehn winds. The approach uses products generated from GNSS (Global Navigation Satellite Systems) in combination with machine learning-based classification algorithms to detect and predict foehn winds at Altdorf, Switzerland. Results are encouraging and comparable to similar studies using meteorological data, which might qualify the method as an additional tool for short-term foehn forecasting in the future.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Willem J. Marais and Matthew Hayman
Atmos. Meas. Tech., 15, 5159–5180, https://doi.org/10.5194/amt-15-5159-2022, https://doi.org/10.5194/amt-15-5159-2022, 2022
Short summary
Short summary
For atmospheric science and weather prediction, it is important to make water vapor measurements in real time. A low-cost lidar instrument has been developed by Montana State University and the National Center for Atmospheric Research. We developed an advanced signal-processing method to extend the scientific capability of the lidar instrument. With the new method we show that the maximum altitude at which the MPD can make water vapor measurements can be extended up to 8 km.
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech., 15, 5033–5060, https://doi.org/10.5194/amt-15-5033-2022, https://doi.org/10.5194/amt-15-5033-2022, 2022
Short summary
Short summary
The Global Precipitation Measurement mission is an international satellite mission providing regular global rain measurements. We present two newly developed machine-learning-based implementations of one of the algorithms responsible for turning the satellite observations into rain measurements. We show that replacing the current algorithm with a neural network improves the accuracy of the measurements. A neural network that also makes use of spatial information unlocks further improvements.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022, https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.
Stephen R. Kaeppler, Ethan S. Miller, Daniel Cole, and Teresa Updyke
Atmos. Meas. Tech., 15, 4531–4545, https://doi.org/10.5194/amt-15-4531-2022, https://doi.org/10.5194/amt-15-4531-2022, 2022
Short summary
Short summary
This investigation demonstrates how useful ionospheric parameters can be extracted from existing high-frequency radars that are used for oceanographic research. The methodology presented can be used by scientists and radio amateurs to understand ionospheric dynamics.
Roberto Cremonini, Tanel Voormansik, Piia Post, and Dmitri Moisseev
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-220, https://doi.org/10.5194/amt-2022-220, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Climatology of extreme rainfalls for a certain location is crucial for several applications. This study investigates the use of weather polarimetric data to estimate annual hourly maxima in Italy and Estonia. The results demonstrate that thanks to weather radar's high spatial resolution, even a limited-time series of polarimetric weather radar observations can provide reliable estimations of extreme values distribution parameters for rainfall maxima in climatological homogeneous regions.
Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens
Atmos. Meas. Tech., 15, 3925–3940, https://doi.org/10.5194/amt-15-3925-2022, https://doi.org/10.5194/amt-15-3925-2022, 2022
Short summary
Short summary
A total least squares (TLS) regression is used to optimally estimate linear speed-dependent biases between Aeolus Level-2B winds and short-term (6 h) forecasts of NOAA’s FV3GFS. The winds for 1–7 September 2019 are examined. Clear speed-dependent biases for both Mie and Rayleigh winds are found, particularly in the tropics and Southern Hemisphere. Use of the TLS correction improves the forecast of the 26–28 November 2019 winter storm over the USA.
Snizhana Ross, Arttu Arjas, Ilkka I. Virtanen, Mikko J. Sillanpää, Lassi Roininen, and Andreas Hauptmann
Atmos. Meas. Tech., 15, 3843–3857, https://doi.org/10.5194/amt-15-3843-2022, https://doi.org/10.5194/amt-15-3843-2022, 2022
Short summary
Short summary
Radar measurements of thermal fluctuations in the Earth's ionosphere produce weak signals, and tuning to specific altitudes results in suboptimal resolution for other regions, making an accurate analysis of these changes difficult. A novel approach to improve the resolution and remove measurement noise is considered. The method can capture variable characteristics, making it ideal for the study of a large range of data. Synthetically generated examples and two measured datasets were considered.
Benoît Tournadre, Benoît Gschwind, Yves-Marie Saint-Drenan, Xuemei Chen, Rodrigo Amaro E Silva, and Philippe Blanc
Atmos. Meas. Tech., 15, 3683–3704, https://doi.org/10.5194/amt-15-3683-2022, https://doi.org/10.5194/amt-15-3683-2022, 2022
Short summary
Short summary
Solar radiation received by the Earth's surface is valuable information for various fields like the photovoltaic industry or climate research. Pictures taken from satellites can be used to estimate the solar radiation from cloud reflectivity. Two issues for a good estimation are different instrumentations and orbits. We modify a widely used method that is today only used on geostationary satellites, so it can be applied on instruments on different orbits and with different sensitivities.
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022, https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary
Short summary
The Micro Rain Radar PRO (MRR-PRO) is a meteorological radar, with a relevant set of features for deployment in remote locations. We developed an algorithm, named ERUO, for the processing of its measurements of snowfall. The algorithm addresses typical issues of the raw spectral data, such as interference lines, but also improves the quality and sensitivity of the radar variables. ERUO has been evaluated over four different datasets collected in Antarctica and in the Swiss Jura.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Guy Delrieu, Anil Kumar Khanal, Frédéric Cazenave, and Brice Boudevillain
Atmos. Meas. Tech., 15, 3297–3314, https://doi.org/10.5194/amt-15-3297-2022, https://doi.org/10.5194/amt-15-3297-2022, 2022
Short summary
Short summary
The RadAlp experiment aims at improving quantitative precipitation estimation in the Alps thanks to X-band polarimetric radars and in situ measurements deployed in Grenoble, France. We revisit the physics of propagation and attenuation of microwaves in rain. We perform a generalized sensitivity analysis in order to establish useful parameterization for attenuation corrections. Originality lies in the use of otherwise undesired mountain returns for constraining the considered physical model.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
Sebastian Becker, André Ehrlich, Evelyn Jäkel, Tim Carlsen, Michael Schäfer, and Manfred Wendisch
Atmos. Meas. Tech., 15, 2939–2953, https://doi.org/10.5194/amt-15-2939-2022, https://doi.org/10.5194/amt-15-2939-2022, 2022
Short summary
Short summary
Airborne radiation measurements are used to characterize the solar directional reflection of a mixture of Arctic sea ice and open-ocean surfaces in the transition zone between both surface types. The mixture reveals reflection properties of both surface types. It is shown that the directional reflection of the mixture can be reconstructed from the directional reflection of the individual surfaces, accounting for the special conditions present in the transition zone.
You Zhao, Chao Liu, Di Di, Ziqiang Ma, and Shihao Tang
Atmos. Meas. Tech., 15, 2791–2805, https://doi.org/10.5194/amt-15-2791-2022, https://doi.org/10.5194/amt-15-2791-2022, 2022
Short summary
Short summary
A typhoon is a high-impact atmospheric phenomenon that causes most significant socioeconomic damage, and its precipitation observation is always needed for typhoon characteristics and disaster prevention. This study developed a typhoon precipitation fusion method to combine observations from satellite radiometers, rain gauges and reanalysis to provide much improved typhoon precipitation datasets.
Witali Krochin, Francisco Navas-Guzmán, David Kuhl, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 15, 2231–2249, https://doi.org/10.5194/amt-15-2231-2022, https://doi.org/10.5194/amt-15-2231-2022, 2022
Short summary
Short summary
This study leverages atmospheric temperature measurements performed with a ground-based radiometer making use of data that was collected during a 4-year observational campaign applying a new retrieval algorithm that improves the maximal altitude range from 45 to 55 km. The measurements are validated against two independent data sets, MERRA2 reanalysis data and the meteorological analysis of NAVGEM-HA.
Lu Yao, Yi Liu, Dongxu Yang, Zhaonan Cai, Jing Wang, Chao Lin, Naimeng Lu, Daren Lyu, Longfei Tian, Maohua Wang, Zengshan Yin, Yuquan Zheng, and Sisi Wang
Atmos. Meas. Tech., 15, 2125–2137, https://doi.org/10.5194/amt-15-2125-2022, https://doi.org/10.5194/amt-15-2125-2022, 2022
Short summary
Short summary
A physics-based SIF retrieval algorithm, IAPCAS/SIF, is introduced and applied to OCO-2 and TanSat measurements. The strong linear relationship between OCO-2 SIF retrieved by IAPCAS/SIF and the official product indicates the algorithm's reliability. The good consistency in the spatiotemporal patterns and magnitude of the OCO-2 and TanSat SIF products suggests that the combinative usage of multi-satellite products has potential and that such work would contribute to further research.
Biao Tong, Xiangfei Sun, Jiyang Fu, Yuncheng He, and Pakwai Chan
Atmos. Meas. Tech., 15, 1829–1848, https://doi.org/10.5194/amt-15-1829-2022, https://doi.org/10.5194/amt-15-1829-2022, 2022
Short summary
Short summary
In recent years, there has been numerous research on tropical cyclone (TC) observation based on satellite cloud images (SCIs), but most methods are limited by low efficiency and subjectivity. To overcome subjectivity and improve efficiency of traditional methods, this paper uses deep learning technology to do further research on fingerprint identification of TCs. Results provide an automatic and objective method to distinguish TCs from SCIs and are convenient for subsequent research.
Marie Bouillon, Sarah Safieddine, Simon Whitburn, Lieven Clarisse, Filipe Aires, Victor Pellet, Olivier Lezeaux, Noëlle A. Scott, Marie Doutriaux-Boucher, and Cathy Clerbaux
Atmos. Meas. Tech., 15, 1779–1793, https://doi.org/10.5194/amt-15-1779-2022, https://doi.org/10.5194/amt-15-1779-2022, 2022
Short summary
Short summary
The IASI instruments have been observing Earth since 2007. We use a neural network to retrieve atmospheric temperatures. This new temperature data record is validated against other datasets and shows good agreement. We use this new dataset to compute trends over the 2008–2020 period. We found a warming of the troposphere, more important at the poles. In the stratosphere, we found that temperatures decrease everywhere except at the South Pole. The cooling is more pronounced at the South pole.
Maya Ben-Yami, Hilke Oetjen, Helen Brindley, William Cossich, Dulce Lajas, Tiziano Maestri, Davide Magurno, Piera Raspollini, Luca Sgheri, and Laura Warwick
Atmos. Meas. Tech., 15, 1755–1777, https://doi.org/10.5194/amt-15-1755-2022, https://doi.org/10.5194/amt-15-1755-2022, 2022
Short summary
Short summary
Spectral emissivity is a key property of the Earth's surface. Few measurements exist in the far-infrared, despite recent work showing that its contribution is important for accurate modelling of global climate. In preparation for ESA’s EE9 FORUM mission (launch in 2026), this study takes the first steps towards the development of an operational emissivity retrieval for FORUM by investigating the sensitivity of the emissivity product to different physical and operational parameters.
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.
Richard Müller and Uwe Pfeifroth
Atmos. Meas. Tech., 15, 1537–1561, https://doi.org/10.5194/amt-15-1537-2022, https://doi.org/10.5194/amt-15-1537-2022, 2022
Short summary
Short summary
The great works of physics teach us that a central paradigm of science should be to make methods and theories as easy as possible and as complex as needed. This paper provides a brief review of remote sensing of solar surface irradiance based on this paradigm.
S. Joseph Munchak, Robert S. Schrom, Charles N. Helms, and Ali Tokay
Atmos. Meas. Tech., 15, 1439–1464, https://doi.org/10.5194/amt-15-1439-2022, https://doi.org/10.5194/amt-15-1439-2022, 2022
Short summary
Short summary
The ability to measure snowfall with weather radar has greatly advanced with the development of techniques that utilize dual-polarization measurements, which provide information about the snow particle shape and orientation, and multi-frequency measurements, which provide information about size and density. This study combines these techniques with the NASA D3R radar, which provides dual-frequency polarimetric measurements, with data that were observed during the 2018 Winter Olympics.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022, https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary
Short summary
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data. Instead of a binary cloud mask, it applies cloud probability values smaller than 20% of the A3 edition of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record provided by the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT. According to simulations, the 90% quantile was 1.1% for the absolute albedo error and 2.2% for the relative error.
Shihan Chen, Yuanjian Yang, Fei Deng, Yanhao Zhang, Duanyang Liu, Chao Liu, and Zhiqiu Gao
Atmos. Meas. Tech., 15, 735–756, https://doi.org/10.5194/amt-15-735-2022, https://doi.org/10.5194/amt-15-735-2022, 2022
Short summary
Short summary
This paper proposes a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a random forest (RF) model. The spatial distribution of CUHII was evaluated at 30 m resolution based on the output of the RF model. The present RF model framework for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII.
Brian J. Carroll, Amin R. Nehrir, Susan A. Kooi, James E. Collins, Rory A. Barton-Grimley, Anthony Notari, David B. Harper, and Joseph Lee
Atmos. Meas. Tech., 15, 605–626, https://doi.org/10.5194/amt-15-605-2022, https://doi.org/10.5194/amt-15-605-2022, 2022
Short summary
Short summary
HALO is a recently developed lidar system that demonstrates new technologies and advanced algorithms for profiling water vapor as well as aerosol and cloud properties. The high-resolution, high-accuracy measurements have unique advantages within the suite of atmospheric instrumentation, such as directly trading water vapor measurement resolution for precision. This paper provides the methodology and first water vapor results, showing agreement with in situ and spaceborne sounder measurements.
Cited articles
Bony, S., Stevens, B., Frierson, D., Jakob, C., Kageyama, M., Pincus, R.,
Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., and Sobel, A. H.: Clouds,
circulation and climate sensitivity, Nat. Geosci., 8, 261–268,
https://doi.org/10.1038/ngeo2398, 2015.
Chang, C.-C. and Lin, C.-J.: LIBSVM: A library for support vector machines,
ACM Trans. Intell. Syst. Technol., 2, 27, https://doi.org/10.1145/1961189.1961199,
2011.
Chelton, D. B., Schlax, M. G., Samelson, R. M., Farrar, J. T., Molemaker, M.
J., McWilliams, J. C., and Gula, J.: Prospects for future satellite
estimation of small-scale variability of ocean surface velocity and
vorticity, Prog. Oceanogr., 173, 256–350,
https://doi.org/10.1016/j.pocean.2018.10.012, 2019.
Cornford, D., Nabney, I. T., and Bishop, C. M.: Neural network-based wind
vector retrieval from satellite scatterometer data, Neural Comput.
Appl., 8, 206–217, https://doi.org/10.1007/s005210050023, 1999.
Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach,
Q. J. Roy. Meteor. Soc., 120, 1367–1387,
https://doi.org/10.1002/qj.49712051912, 1994.
Descombes, G., Auligné, T., Vandenberghe, F., Barker, D. M., and Barré, J.: Generalized background error covariance matrix model (GEN_BE v2.0), Geosci. Model Dev., 8, 669–696, https://doi.org/10.5194/gmd-8-669-2015, 2015.
Draper, D. W. and Long, D. G.: Simultaneous wind and rain retrieval using
SeaWinds data, IEEE T. Geosci. Remote, 42,
1411–1423, https://doi.org/10.1109/tgrs.2004.830169, 2004.
Du, Y., Dong, X., Jiang, X., Zhang, Y., Zhu, D., Sun, Q., Wang, Z., Niu, X.,
Chen, W., and Zhu, C.: Ocean Surface Current multiscale Observation Mission
(OSCOM): Simultaneous measurement of ocean surface current, vector wind, and
temperature, Prog. Oceanogr., 193, 102531,
https://doi.org/10.1016/j.pocean.2021.102531, 2021.
EUMETSAT: Wind products, EUMETSAT [data set], available at: https://osi-saf.eumetsat.int/products/wind-products, last access: 19 November 2021.
Gill, A. E.: Atmosphere-Ocean Dynamic, in: International Geophysics Series, volume 30, Academic Press, San Diego, California, USA, 1982.
Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R.,
Kidd, C., Nelkin, E., Sorooshian, S., Tan, J., and Xie, P.: NASA global precipitation measurement
(GPM) integrated multi-satellitE retrievals for GPM (IMERG) version
5.2, NASA's Precipitation Process. Center [data set], available at: https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_ATBD_V5.pdf (last access: 17 November 2021), 2018.
Japan Aerospace Exploration Agency (JAXA): JAXA Himawari Monitor, JAXA [data set], available at: https://www.eorc.jaxa.jp/ptree/index.html, last access: 19 November 2021.
Japan Meteorological Agency: Himawari-8/9 Himawari Standard Data User's Guide, JMA Tech, available at: http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_users_guide_en_v12.pdf (last access: 17 November 2021), 2015.
King, G. P., Portabella, M., Lin, W., and Stoffelen, A.: Correlating extremes in wind and stress divergence with extremes in rain over the Tropical Atlantic, KNMI Sci. Rep., OSI_AVS_15_02, available at: http://digital.csic.es/bitstream/10261/158566/1/King_et_al_2017.pdf (last access: 10 November 2021), 2017.
KNMI: Wind products, KNMI [data set], available at:
https://scatterometer.knmi.nl/archived_prod/, last access:
19 November 2021.
Kumar, A., Ramsankaran, R., Brocca, L., and Muñoz-Arriola, F.: A simple
machine learning approach to model real-time streamflow using satellite
inputs: Demonstration in a data scarce catchment, J. Hydrol., 595,
126046, https://doi.org/10.1016/j.jhydrol.2021.126046, 2021.
Li, L., Im, E., Connor, L. N., and Chang, P. S.: Retrieving ocean surface
wind speed from the TRMM precipitation radar measurements, IEEE T. Geosci. Remote, 42, 1271–1282, https://doi.org/10.1109/TGRS.2004.828924,
2004.
Lin, W. and Portabella, M.: Toward an improved wind quality control for
RapidScat, IEEE T. Geosci. Remote, 55,
3922–3930, https://doi.org/10.1109/TGRS.2017.2683720, 2017.
Linwood Jones, W., Black, P., Boggs, D., Bracalente, E., Brown, R., Dome, G., Ernst, J., Halberstam, I., Overland, J., Peteherych, S., Pierson, W., Wentz, F., Woiceshyn, P., and Wurtele, M.: Seasat Scatterometer: Results of the Gulf of Alaska Workshop, Science, 204, 1413–1415, https://doi.org/10.1126/science.204.4400.1413, 1979.
Liu, C.-Y., Aryastana, P., Liu, G.-R., and Huang, W.-R.: Assessment of
satellite precipitation product estimates over Bali Island, Atmos.
Res., 244, 105032, https://doi.org/10.1016/j.atmosres.2020.105032, 2020.
Majumdar, S. J., Sun, J., Golding, B., Joe, P., Dudhia, J., Caumont, O.,
Chandra Gouda, K., Steinle, P., Vincendon, B., and Wang, J.: Multiscale
Forecasting of High-Impact Weather: Current Status and Future Challenges,
B. Am. Meteorol. Soc., 102, E635–E659,
https://doi.org/10.1175/BAMS-D-20-0111.1, 2021.
NASA: Precipitation Data Directory, NASA [data set], available at: https://gpm.nasa.gov/data/directory, last access: 19 November 2021.
Owen, M. P. and Long, D. G.: M-ary Bayes estimator selection for QuikSCAT
simultaneous wind and rain retrieval, IEEE T. Geosci.
Remote, 49, 4431–4444, https://doi.org/10.1109/TGRS.2011.2143721, 2011.
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's
spectral statistical-interpolation analysis system, Mon. Weather Rev.,
120, 1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.
Portabella, M.: Wind field retrieval from satellite radar systems, PhD, Astron. Meteorol. Dept., Universitat de Barcelona Barcelona, Spain, available at: https://cdn.knmi.nl/system/data_center_publications/files/000/067/780/original/phd_thesis.pdf?1495620892 (last access: 19 November 2021), 2002.
Portabella, M. and Stoffelen, A.: Characterization of residual information
for SeaWinds quality control, IEEE T. Geosci. Remote, 40, 2747–2759, https://doi.org/10.1109/TGRS.2002.807750, 2002.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., and
Carvalhais, N.: Deep learning and process understanding for data-driven
Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Smola, A. J. and Schölkopf, B.: A tutorial on support vector regression, Stat. Comput., 14, 199–222, https://doi.org/10.1023/b:stco.0000035301.49549.88, 2004.
Stiles, B. W. and Dunbar, R. S.: A neural network technique for improving
the accuracy of scatterometer winds in rainy conditions, IEEE T.
Geosci. Remote, 48, 3114–3122, https://doi.org/10.1109/TGRS.2010.2049362,
2010.
Stoffelen, A. and Anderson, D.: Scatterometer data interpretation:
Measurement space and inversion, J. Atmos. Ocean.
Tech., 14, 1298–1313, https://doi.org/10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2, 1997.
Stoffelen, A. and Vogelzang, J.: Wind bias correction guide, EUMETSAT,
Darmstadt, Germany, 2018.
Stoffelen, A., Kumar, R., Zou, J., Karaev, V., Chang, P. S., and Rodriguez, E.: Ocean Surface Vector Wind Observations, in: Remote Sensing of the Asian Seas, edited by: Barale, V. and Gade, M., Springer International Publishing, Cham, 429–447, https://doi.org/10.1007/978-3-319-94067-0_24, 2019.
Stoffelen, A., Rivas, M. B., and Verspeek, J.: Cone Metrics for C and Ku-Band Scatterometers, in: IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021, 1627–1629, https://doi.org/10.1109/igarss47720.2021.9554778, 2021.
Stoffelen, A. C. M.: Scatterometry, PhD, Utrecht University, Utrecht, the Netherlands, available at: https://dspace.library.uu.nl/bitstream/handle/1874/636/full.pdf (last access: 19 November 2021), 1998.
Thiria, S., Mejia, C., Badran, F., and Crepon, M.: A neural network approach
for modeling nonlinear transfer functions: Application for wind retrieval
from spaceborne scatterometer data, J. Geophys. Res.-Oceans,
98, 22827–22841, https://doi.org/10.1029/93JC01815, 1993.
Vapnik, V.: Statistical learning theory 624, Wiley, New York, 2 pp., 1998.
Vogelzang, J.: Two dimensional variational ambiguity removal (2DVAR), KNMI Tech. Note NWP SAF NWPSAF-KN-TR-004, available at: https://cdn.knmi.nl/system/data_center_publications/files/000/067/778/original/two_dimensional_variational_ambiguity_removal_v1.2.pdf?1495620892 (last access: 15 November 2021), 2007.
Vogelzang, J. and Stoffelen, A.: NWP model error structure functions
obtained from scatterometer winds, IEEE T. Geosci.
Remote, 50, 2525–2533, https://doi.org/10.1109/TGRS.2011.2168407, 2011.
Vogelzang, J. and Stoffelen, A.: Improvements in Ku-band scatterometer wind
ambiguity removal using ASCAT-based empirical background error correlations,
Q. J. Roy. Meteor. Soc., 144, 2245–2259, https://doi.org/10.1002/qj.3349, 2018.
Vogelzang, J., Stoffelen, A., Verhoef, A., and Figa-Saldaña, J.: On the
quality of high-resolution scatterometer winds, J. Geophys.
Res.-Oceans, 116, C10033, https://doi.org/10.1029/2010JC006640, 2011.
Wolters, E. L. A., van den Hurk, B. J. J. M., and Roebeling, R. A.: Evaluation of rainfall retrievals from SEVIRI reflectances over West Africa using TRMM-PR and CMORPH, Hydrol. Earth Syst. Sci., 15, 437–451, https://doi.org/10.5194/hess-15-437-2011, 2011.
Xu, X. and Stoffelen, A.: Improved rain screening for ku-band wind
scatterometry, IEEE T. Geosci. Remote, 58,
2494–2503, https://doi.org/10.1109/TGRS.2019.2951726, 2020.
Xu, X. and Stoffelen, A.: A Further Evaluation of the Quality Indicator Joss for Ku-Band Wind Scatterometry in Tropical Regions, in: IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021, 7299–7302, https://doi.org/10.1109/igarss47720.2021.9553442, 2021.
Xu, X., Stoffelen, A., and Meirink, J. F.: Comparison of ocean surface rain
rates from the global precipitation mission and the Meteosat
second-generation satellite for wind scatterometer quality control, IEEE
J. Sel. Top. Appl.,
13, 2173–2182, https://doi.org/10.1109/JSTARS.2020.2995178, 2020a.
Xu, X., Stoffelen, A., Lin, W., and Dong, X.: Rain False-Alarm-Rate
Reduction for CSCAT, IEEE Geosci. Remote S., 1–5,
https://doi.org/10.1109/LGRS.2020.3039622, 2020b.
Short summary
The support vector machine can effectively represent the increasing effect of rain affecting wind speeds. This research provides a correction of deviations that are skew- to Gaussian-like features caused by rain in Ku-band scatterometer wind. It demonstrates the effectiveness of a machine learning method when used based on elaborate analysis of the model establishment and result validation procedures. The corrected winds provide information previously lacking, which is vital for nowcasting.
The support vector machine can effectively represent the increasing effect of rain affecting...