Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7435-2021
https://doi.org/10.5194/amt-14-7435-2021
Research article
 | 
30 Nov 2021
Research article |  | 30 Nov 2021

Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry

Xingou Xu and Ad Stoffelen

Related authors

Sea Ice Screening Ability in Ku Band and C Band Wind Scatterometry
Xingou Xu and Ad Stoffelen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3840,https://doi.org/10.5194/egusphere-2024-3840, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
An Improvement of the One-dimensional Ocean Wave Description based on SWIM Observations
Yihui Wang and Xingou Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-75,https://doi.org/10.5194/amt-2024-75, 2024
Preprint under review for AMT
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025,https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024,https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024,https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary

Cited articles

Bony, S., Stevens, B., Frierson, D., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., and Sobel, A. H.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. 
Chang, C.-C. and Lin, C.-J.: LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol.​​​​​​​, 2, 27, https://doi.org/10.1145/1961189.1961199, 2011. 
Chelton, D. B., Schlax, M. G., Samelson, R. M., Farrar, J. T., Molemaker, M. J., McWilliams, J. C., and Gula, J.: Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity, Prog. Oceanogr., 173, 256–350, https://doi.org/10.1016/j.pocean.2018.10.012, 2019. 
Cornford, D., Nabney, I. T., and Bishop, C. M.: Neural network-based wind vector retrieval from satellite scatterometer data, Neural Comput. Appl., 8, 206–217, https://doi.org/10.1007/s005210050023, 1999. 
Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for operational implementation of 4D-Var, using an incremental approach, Q. J. Roy. Meteor. Soc., 120, 1367–1387, https://doi.org/10.1002/qj.49712051912, 1994. 
Download
Short summary
The support vector machine can effectively represent the increasing effect of rain affecting wind speeds. This research provides a correction of deviations that are skew- to Gaussian-like features caused by rain in Ku-band scatterometer wind. It demonstrates the effectiveness of a machine learning method when used based on elaborate analysis of the model establishment and result validation procedures. The corrected winds provide information previously lacking, which is vital for nowcasting.