Articles | Volume 14, issue 12
Research article
30 Nov 2021
Research article |  | 30 Nov 2021

Support vector machine tropical wind speed retrieval in the presence of rain for Ku-band wind scatterometry

Xingou Xu and Ad Stoffelen

Related authors

Mesoscale weather systems and associated potential wind power variations in a mid-latitude sea strait (Kattegat)
Jérôme Neirynck, Jonas Van de Walle, Ruben Borgers, Sebastiaan Jamaer, Johan Meyers, Ad Stoffelen, and Nicole P. M. van Lipzig
Wind Energ. Sci. Discuss.,,, 2023
Revised manuscript has not been submitted
Short summary
Higher-order calibration on WindRAD (Wind Radar) scatterometer winds
Zhen Li, Ad Stoffelen, Anton Verhoef, Zhixiong Wang, Jian Shang, and Honggang Yin
Atmos. Meas. Tech., 16, 4769–4783,,, 2023
Short summary
Mesoscale modelling of North Sea wind resources with COSMO-CLM: model evaluation and impact assessment of future wind farm characteristics on cluster-scale wake losses
Ruben Borgers, Marieke Dirksen, Ine L. Wijnant, Andrew Stepek, Ad Stoffelen, Naveed Akhtar, Jérôme Neirynck, Jonas Van de Walle, Johan Meyers, and Nicole P. M. van Lipzig
Wind Energ. Sci. Discuss.,,, 2023
Revised manuscript accepted for WES
Short summary
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124,,, 2022
Short summary
Intercomparison of wind observations from ESA’s satellite mission Aeolus, ERA5 reanalysis and radiosonde over China
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss.,,, 2022
Publication in AMT not foreseen
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer
Volker Wulfmeyer, Christoph Senff, Florian Späth, Andreas Behrendt, Diego Lange, Robert M. Banta, W. Alan Brewer, Andreas Wieser, and David D. Turner
Atmos. Meas. Tech., 17, 1175–1196,,, 2024
Short summary
Forward operator for polarimetric radio occultation measurements
Daisuke Hotta, Katrin Lonitz, and Sean Healy
Atmos. Meas. Tech., 17, 1075–1089,,, 2024
Short summary
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799,,, 2024
Short summary
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599,,, 2024
Short summary
Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514,,, 2024
Short summary

Cited articles

Bony, S., Stevens, B., Frierson, D., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., and Sobel, A. H.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268,, 2015. 
Chang, C.-C. and Lin, C.-J.: LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol.​​​​​​​, 2, 27,, 2011. 
Chelton, D. B., Schlax, M. G., Samelson, R. M., Farrar, J. T., Molemaker, M. J., McWilliams, J. C., and Gula, J.: Prospects for future satellite estimation of small-scale variability of ocean surface velocity and vorticity, Prog. Oceanogr., 173, 256–350,, 2019. 
Cornford, D., Nabney, I. T., and Bishop, C. M.: Neural network-based wind vector retrieval from satellite scatterometer data, Neural Comput. Appl., 8, 206–217,, 1999. 
Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for operational implementation of 4D-Var, using an incremental approach, Q. J. Roy. Meteor. Soc., 120, 1367–1387,, 1994. 
Short summary
The support vector machine can effectively represent the increasing effect of rain affecting wind speeds. This research provides a correction of deviations that are skew- to Gaussian-like features caused by rain in Ku-band scatterometer wind. It demonstrates the effectiveness of a machine learning method when used based on elaborate analysis of the model establishment and result validation procedures. The corrected winds provide information previously lacking, which is vital for nowcasting.