Articles | Volume 14, issue 2
https://doi.org/10.5194/amt-14-869-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-869-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What millimeter-wavelength radar reflectivity reveals about snowfall: an information-centric analysis
Space Science and Engineering Center, University of Wisconsin – Madison, Madison, WI, USA
Tristan S. L'Ecuyer
Department of Atmospheric and Oceanic Sciences, University of Wisconsin – Madison, Madison, WI, USA
Related authors
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Anne Sophie Daloz, Marian Mateling, Tristan L'Ecuyer, Mark Kulie, Norm B. Wood, Mikael Durand, Melissa Wrzesien, Camilla W. Stjern, and Ashok P. Dimri
The Cryosphere, 14, 3195–3207, https://doi.org/10.5194/tc-14-3195-2020, https://doi.org/10.5194/tc-14-3195-2020, 2020
Short summary
Short summary
The total of snow that falls globally is a critical factor governing freshwater availability. To better understand how this resource is impacted by climate change, we need to know how reliable the current observational datasets for snow are. Here, we compare five datasets looking at the snow falling over the mountains versus the other continents. We show that there is a large consensus when looking at fractional contributions but strong dissimilarities when comparing magnitudes.
Chanyoung Park, Brian J. Soden, Ryan J. Kramer, Tristan S. L'Ecuyer, and Haozhe He
Atmos. Chem. Phys., 25, 7299–7313, https://doi.org/10.5194/acp-25-7299-2025, https://doi.org/10.5194/acp-25-7299-2025, 2025
Short summary
Short summary
This study addresses the long-standing challenge of quantifying the impact of aerosol–cloud interactions. Using satellite observations, reanalysis data, and a "perfect-model" cross-validation, we show that explicitly accounting for aerosol–cloud droplet activation rates is key to accurately estimating ERFaci (effective radiative forcing due to aerosol–cloud interactions). Our results indicate a smaller and less uncertain ERFaci than previously assessed, implying the reduced role of aerosol–cloud interactions in shaping climate sensitivity.
Natasha Vos, Tristan S. L'Ecuyer, and Tim Michaels
EGUsphere, https://doi.org/10.5194/egusphere-2024-2040, https://doi.org/10.5194/egusphere-2024-2040, 2024
Preprint withdrawn
Short summary
Short summary
PREFIRE uses two CubeSats to make novel measurements of outgoing energy. The CubeSats will frequently resample regions, forming orbit “intersections” that reveal how polar processes impact thermal emissions. This study develops new methods to characterize orbit intersections and applies them to simulated PREFIRE orbits to assess the hypothetical resampling distribution. Generalizing our results informs future missions that two CubeSats at different altitudes greatly enhance resampling coverage.
Brian Kahn, Cameron Bertossa, Xiuhong Chen, Brian Drouin, Erin Hokanson, Xianglei Huang, Tristan L'Ecuyer, Kyle Mattingly, Aronne Merrelli, Tim Michaels, Nate Miller, Federico Donat, Tiziano Maestri, and Michele Martinazzo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2463, https://doi.org/10.5194/egusphere-2023-2463, 2023
Preprint archived
Short summary
Short summary
A cloud detection mask algorithm is developed for the upcoming Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) satellite mission to be launched by NASA in May 2024. The cloud mask is compared to "truth" and is capable of detecting over 90 % of all clouds globally tested with simulated data, and about 87 % of all clouds in the Arctic region.
Alyson Rose Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-688, https://doi.org/10.5194/acp-2022-688, 2022
Revised manuscript not accepted
Short summary
Short summary
Aerosol, or small particles released by human activities, enter the atmosphere and eventually interact with clouds in what we term aerosol-cloud interactions. As more aerosol enter a cloud, they act as cloud droplet nuclei, increasing the number of cloud droplets in a cloud and delaying rain formation, leading to a larger cloud. We use machine learning and found that these interactions lead to 1.27 % more cloudiness on Earth and offset ~1/4 of the warming due to CO2.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
Michael R. Gallagher, Matthew D. Shupe, Hélène Chepfer, and Tristan L'Ecuyer
The Cryosphere, 16, 435–450, https://doi.org/10.5194/tc-16-435-2022, https://doi.org/10.5194/tc-16-435-2022, 2022
Short summary
Short summary
By using direct observations of snowfall and mass changes, the variability of daily snowfall mass input to the Greenland ice sheet is quantified for the first time. With new methods we conclude that cyclones west of Greenland in summer contribute the most snowfall, with 1.66 Gt per occurrence. These cyclones are contextualized in the broader Greenland climate, and snowfall is validated against mass changes to verify the results. Snowfall and mass change observations are shown to agree well.
Alyson Douglas and Tristan L'Ecuyer
Atmos. Chem. Phys., 21, 15103–15114, https://doi.org/10.5194/acp-21-15103-2021, https://doi.org/10.5194/acp-21-15103-2021, 2021
Short summary
Short summary
When aerosols enter the atmosphere, they interact with the clouds above in what we term aerosol–cloud interactions and lead to a series of reactions which delay the onset of rain. This delay may lead to increased rain rates, or invigoration, when the cloud eventually rains. We show that aerosol leads to invigoration in certain environments. The strength of the invigoration depends on how large the cloud is, which suggests that it is highly tied to the organization of the cloud system.
Erik Johansson, Abhay Devasthale, Michael Tjernström, Annica M. L. Ekman, Klaus Wyser, and Tristan L'Ecuyer
Geosci. Model Dev., 14, 4087–4101, https://doi.org/10.5194/gmd-14-4087-2021, https://doi.org/10.5194/gmd-14-4087-2021, 2021
Short summary
Short summary
Understanding the coupling of clouds to large-scale circulation is a grand challenge for the climate community. Cloud radiative heating (CRH) is a key parameter in this coupling and is therefore essential to model realistically. We, therefore, evaluate a climate model against satellite observations. Our findings indicate good agreement in the seasonal pattern of CRH even if the magnitude differs. We also find that increasing the horizontal resolution in the model has little effect on the CRH.
Andrew M. Dzambo, Tristan L'Ecuyer, Kenneth Sinclair, Bastiaan van Diedenhoven, Siddhant Gupta, Greg McFarquhar, Joseph R. O'Brien, Brian Cairns, Andrzej P. Wasilewski, and Mikhail Alexandrov
Atmos. Chem. Phys., 21, 5513–5532, https://doi.org/10.5194/acp-21-5513-2021, https://doi.org/10.5194/acp-21-5513-2021, 2021
Short summary
Short summary
This work highlights a new algorithm using data collected from the 2016–2018 NASA ORACLES field campaign. This algorithm synthesizes cloud and rain measurements to attain estimates of cloud and precipitation properties over the southeast Atlantic Ocean. Estimates produced by this algorithm compare well against in situ estimates. Increased rain fractions and rain rates are found in regions of atmospheric instability. This dataset can be used to explore aerosol–cloud–precipitation interactions.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Elin A. McIlhattan, Claire Pettersen, Norman B. Wood, and Tristan S. L'Ecuyer
The Cryosphere, 14, 4379–4404, https://doi.org/10.5194/tc-14-4379-2020, https://doi.org/10.5194/tc-14-4379-2020, 2020
Short summary
Short summary
Snowfall builds the mass of the Greenland Ice Sheet (GrIS) and reduces melt by brightening the surface. We present satellite observations of GrIS snowfall events divided into two regimes: those coincident with ice clouds and those coincident with mixed-phase clouds. Snowfall from ice clouds plays the dominant role in building the GrIS, producing ~ 80 % of total accumulation. The two regimes have similar snowfall frequency in summer, brightening the surface when solar insolation is at its peak.
Kai-Wei Chang and Tristan L'Ecuyer
Atmos. Chem. Phys., 20, 12499–12514, https://doi.org/10.5194/acp-20-12499-2020, https://doi.org/10.5194/acp-20-12499-2020, 2020
Short summary
Short summary
High-altitude clouds in the tropics that reside in the transition layer between the troposphere and stratosphere are important as they influence the amount of water vapor going into the stratosphere. Waves in the atmosphere can influence the temperature and form these high-altitude cirrus clouds. We use satellite observations to explore the connection between atmospheric waves and clouds and show that cirrus clouds occurrence and properties are closely correlated with waves.
Anne Sophie Daloz, Marian Mateling, Tristan L'Ecuyer, Mark Kulie, Norm B. Wood, Mikael Durand, Melissa Wrzesien, Camilla W. Stjern, and Ashok P. Dimri
The Cryosphere, 14, 3195–3207, https://doi.org/10.5194/tc-14-3195-2020, https://doi.org/10.5194/tc-14-3195-2020, 2020
Short summary
Short summary
The total of snow that falls globally is a critical factor governing freshwater availability. To better understand how this resource is impacted by climate change, we need to know how reliable the current observational datasets for snow are. Here, we compare five datasets looking at the snow falling over the mountains versus the other continents. We show that there is a large consensus when looking at fractional contributions but strong dissimilarities when comparing magnitudes.
Cited articles
Bharadwaj, N., Lindenmaier, A., Widener, K.
B., Johnson, K. L., and Venkatesh, V.: Ka-band ARM zenith profiling radar (KAZR) network
for climate study, 36th Conf. on Radar Meteorology, Breckenridge, Colorado, USA, 16–20 September 2013, Am. Meteorol. Soc.,
14A.8, available at: https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228620/14A8_ams_radconf_kazr.pdf (last access: 15 April 2020), 2013. a
Boggs, P. T., Byrd, R. H., Rogers, J. E., and
Schnabel, R. B.: User's reference guide for ODRPACK version 2.01 software for weighted
orthogonal distance regression, U. S. Department of Commerce, National Institute of Standards
and Technology, Applied Computational Mathematics Division, Gaithersburg, MD, USA, NISTIR 92-4834,
99 pp., 1992. a
Brandes, E. A., Ikeda, K., Zhang, G.,
Schoenhuber, M., and Rasmussen, R. M.: A statistical and physical description of
hydrometeor distributions in Colorado snowstorms using a video disdrometer, J. Appl. Meteorol.
Clim., 46, 634–650, https://doi.org/10.1175/JAM2489.1, 2007. a, b, c, d
Chandrasekar, V., Joshil, S. S.,
Kumar, M., Vega, M. A., Wolff, D., and Petersen, W.: Snowfall observations during the
Winter Olympics of 2018 campaign using the D3R radar, IGARSS 2019: 2019 IEEE International
Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019, 4561–4564, 2019. a
Cooper, S. J., L'Ecuyer, T. S., Gabriel, P.,
Baran, A. J., and Stephens, G. L.: Objective assessment of the information content of
visible and infrared radiance measurements for cloud microphysical property retrievals over the
global oceans. Part II: Ice clouds, J. Appl. Meteorol. Clim., 45, 42–62, 2006 a
Goodison, B. E., Louie, P. Y. T., and Yang,
D.: WMO solid precipitation measurement intercomparison: Final report, World
Meteorological Organization Instruments and Observing Methods Report No. 67, WMO/TD – No. 872,
88 pp., 212 pp. Annexes, 1998. a
Gunn, K. L. S. and Marshall, J. S.:
The distribution with size of aggregate snowflakes, J. Meteorol., 15, 452–461, 1958. a
Herzegh, P. H. and Hobbs, P. V.:
Size spectra of ice particles in frontal clouds: correlations between spectrum shape and cloud
conditions, Q. J. Roy. Meteor. Soc., 111, 463–477, 1985. a
Heymsfield, A. J.: Ice crystal terminal
velocities, J. Atmos. Sci., 29, 1348–1357, 1972. a
Heymsfield, A. J. and
Miloshevich, L. M.: Parameterizations for the cross-sectional area and extinction of
cirrus and stratiform ice cloud particles, J. Atmos. Sci., 60, 936–956, 2003. a
Heymsfield, A. J., Field, P., and
Bansemer, A.: Exponential size distributions for snow, J. Atmos. Sci., 65, 4017–4031,
https://doi.org/10.1175/2008JAS2583.1, 2008. a, b
Hong, G.: Radar backscattering properties of nonspherical ice crystals at 94 GHz, 112, D22203, https://doi.org/10.1029/2007JD008839, 2007. a
Houze Jr., R. A., McMurdie, L. A., Petersen, W. A., Schwaller, M. R., Baccus, W., Lundquist, J. D., Mass, C. F., Nijssen, B., Rutledge, S. A., Hudak, D. R., Tanelli, S., Mace, G. G., Poellot, M. R., Lettenmaier, D. P., Zagrodnik, J. P., Rowe, A. K., DeHaart, J. C., Madaus, L. E., Barnes, H. C., and Chandrasekar, V.: The
Olympic Mountains Experiment (OLYMPEX), B. Am. Meteorol. Soc., 98, 2167–2188,
https://doi.org/10.1175/BAMS-D-16-0182.1, 2017 a
Hudak, D., Barker, H., Rodriguez, P., and Donovan,
D.: The Canadian CloudSat validation project, in: Proceedings of the Fourth European Conference on Radar in
Meteorology and Hydrology, Barcelona, Spain, 18–22 September 2006, available at: http://www.crahi.upc.edu/ERAD2006/proceedingsMask/00165.pdf (last access: 20 April 2020), 609–612, 2006. a, b
Iguchi, T., Kawamoto, N., and Oki, R.:
Detection of intense ice precipitation with GPM/DPR, J. Atmos. Ocean. Tech., 35, 491–502,
https://doi.org/10.1175/JTECH-D-17-0120.1, 2018. a
Imai, I., Fujiwara, M., Ichimura, I., and Toyama, Y.:
Radar reflectivity of falling snow, Pap. Meteorol. Geophys., 6, 130–139,
1955. a
Jones, E., Oliphant, T., Peterson, P., and others: SciPy: Open
source scientific tools for Python, available at: http://www.scipy.org (last access: 24 September 2010), 2001. a
Kajikawa, M.: Measurement of falling velocity of
individual snow crystals, J. Meteorol. Soc. Jpn., 50, 577–584, 1972. a
Kajikawa, M.: Measurements of falling velocity of
individual graupel particles, J. Meteorol. Soc. Jpn., 53, 476–481, 1975. a
Kajikawa, M.: Observations of the falling motion
of early snow flakes. Part I: Relationship between the free-fall pattern and the number and
shape of component snow crystals, J. Meteorol. Soc. Jpn., 60, 797–803, 1982. a
Kulie, M. S. and Bennartz, R.:
Utilizing spaceborne radars to retrieve dry snowfall, J. Appl. Meteorol. Clim., 48, 2564–2580,
https://doi.org/10.1175/2009JAMC2193.1, 2009. a, b, c
L'Ecuyer, T. S., Gabriel, P., Leesman, K.,
Cooper, S. J., and Stephens, G. L.: Objective assessment of the information content of
visible and infrared radiance measurements for cloud microphysical property retrievals over the
global oceans. Part I: Liquid clouds, J. Appl. Meteorol. Clim., 45, 20–41, 2006. a, b
Liao, L., Meneghini, R., Iguchi, T., and Detwiler,
A.: Use of dual-wavelength radar for snow parameter estimates, J. Atmos. Ocean.
Tech., 22, 1494–1506, 2005. a
Liu, G.: Deriving snow cloud characteristics from CloudSat
observations, J. Geophys. Res., 113, D00A09, https://doi.org/10.1029/2007JD009766, 2008. a, b, c
Lobl, E. S., Aonashi, K., Griffith, B., Kummerow, C.,
Liu, G., Murakami, M., and Wilheit, T.: Wakasa Bay, an AMSR precipitation validation
campaign, B. Am. Meteorol. Soc., 88, 551–558, 2007. a
Maahn, M., Burgard, C., Crewell, S., Gorodetskaya,
I. V., Kneifel, S., Lhermitte, S., Van Tricht, K., and van Lipzig, N. P. M.: How does the
spaceborne radar blind zone affect derived surface snowfall statistics in polar regions?, J.
Geophys. Res. Atmos., 119, 13604–13620, https://doi.org/10.1002/2014JD022079, 2014. a
Marks, C. J. and Rodgers, C. D.: A
retrieval method for atmospheric composition from limb emission measurements, J. Geophys.
Res., 98, 14939–14953, 1993. a
Mascio, J. and Mace, G. G.: Quantifying
uncertainties in radar forward models through a comparison between CloudSat and SPartICus
reflectivity factors, J. Geophys. Res.-Atmos., 122, 1665–1684, https://doi.org/10.1002/2016JD025183, 2017. a
Matrosov, S. Y.: A dual-wavelength radar method to
measure snowfall rates, J. Appl. Meteorol., 37, 1510–1521, 1998. a
Matrosov, S. Y.: Modeling backscatter properties of
snowfall at millimeter wavelengths, J. Atmos. Sci., 64, 1727–1736, https://doi.org/10.1175/JAS3904.1, 2007. a
Matrosov, S. Y.: Feasibility of using radar
differential Doppler velocity and dual-frequency ratio for sizing particles in thick ice clouds,
J. Geophys. Res., 116, D17202, https://doi.org/10.1029/2011JD015857, 2011. a
Matrosov, S. Y, Shupe, M. D., and Dialalova,
I. V.: Snowfall retrievals using millimeter-wavelength cloud radars, J. Appl. Meteorol.
Clim., 47, 769–777, https://doi.org/10.1175/2007JAMC1768.1, 2008. a, b
Matrosov, S. Y., Campbell, C., Kingsmill, D.,
and Sukovich, E.: Assessing snowfall rates from X-band radar reflectivity measurements,
J. Atmos. Ocean. Tech., 26, 2324–2339, https://doi.org/10.1175/2009JTECHA1238.1, 2009. a
Mitchell, D. L., Zhang, R., and Pitter, R.
L.: Mass-dimension relationships for ice particles and the influence of riming on
snowfall rates, J. Appl. Meteorol., 29, 153–163, 1990. a
Moran, K. P., Martner, B. E., Post, M. J., Kropfli,
R. A., Welsh, D. C., and Widener, K. B.: An unattended cloud-profiling radar for use in
climate research, B. Am. Meteorol. Soc., 79, 443–455, 1998. a
Nakada, U. and Terada Jr., T.:
Simultaneous observations of the mass, falling velocity and form of individual snow crystals, J.
Fac. Sci., Hokkaido Univ., Ser. 2, 1, 191–200, 1935. a
Newman, A. J., Kucera, P. A., and Bliven, L. F.:
Presenting the Snowflake Video Imager (SVI), J. Atmos. Ocean. Tech., 26, 167–179,
https://doi.org/10.1175/2008JTECHA1148.1, 2009. a
Petersen, W. A., L'Ecuyer, T., and Moisseev,
D.: The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx), Earth
Observer, 23, 4–8, 2011. a
Pettersen, C., Kulie, M. S., Bliven, L. F.,
Merrelli, A. J., Petersen, W. A., Wagner, T. J., Wolff, D. B., and Wood, N. B.: A
composite analysis of snowfall modes from four winter seasons in Marquette, Michigan, 2020, J.
Appl. Meteorol. Clim., 59, 103–124, https://doi.org/10.1175/JAMC-D-19-0099.1, 2020. a
Posselt, D. J., Li, X., Tushaus, S. A., and
Mecikalski, J. R.: Assimilation of dual-polarization radar observations in mixed- and
ice-phase regions of convective storms: Information content and forward model errors, Mon. Weather
Rev., 143, 2611–2636, https://doi.org/10.1175/MWR-D-14-00347.1, 2015. a
Ryan, B. F.: On the global variation of precipitating
layer clouds, B. Am. Meteorol. Soc., 77, 54–70, 1996. a
Schirle, C. E., Cooper, S. J., Wolff, M. A.,
Pettersen, C., Wood, N. B., L'Ecuyer, T. S., Ilmo, T., and Nygård, K.: Estimation of
snow microphysical properties at a mountainous site in Norway using combined radar and in situ
microphysical observations, J. Appl. Meteorol. Clim., 58, 1137–1362,
https://doi.org/10.1175/JAMC-D-18-0281.1, 2019. a
Skofronick-Jackson, G.,
Hudak, D., Petersen, W., Nesbitt, S. W., Chandrasekar, V., Durden, S., Gleicher, K. J., Huang, G.-J., Joe, P., Kollias, P., Reed, K. A., Schwaller, M. R., Stewart, R., Tanelli, S., Tokay, A., Wang, J. R., and Wolde, M.: Global Precipitation Measurement Cold season Precipitation Experiment
(GCPEx): For measurement's sake, let it snow, B. Am. Meteorol. Soc., 96, 1719–1741,
https://doi.org/10.1175/BAMS-D-13-00262.1, 2015. a
Skofronick-Jackson, G.,
Kulie, M., Milani, L., Munchak, S. J., Wood, N. B., and Levizzani, V.:
Satellite estimation of falling snow: A Global Precipitation Measurement
(GPM) Core Observatory perspective, J. Appl. Meteorol. Clim., 58, 1429–1448,
https://doi.org/10.1175/JAMC-D-18-0124.1, 2019. a
Taylor, J. R.: An introduction to error analysis,
University Science Books, Sausalito, California, USA, 327 pp., 1997. a
Toyoshima, K., Masunaga, H., and Furuzawa,
F. A.: Early evaluation of Ku- and Ka-band sensitivities for the Global Precipitation
Measurement (GPM) Dual-frequency Precipitation Radar (DPR), SOLA, 16, 6–11,
https://doi.org/10.2151/sola.2020-002, 2015. a
Vaisala Oyj: Weather sensor FD12P user's guide
M210296en-A, Vaisala Oyj, Helsinki, Finland, 154 pp., 2002. a
Wood, N. B.: Estimation of snow microphysical properties
with application to millimeter-wavelength radar retrievals for snowfall rate, PhD
dissertation, Colorado State University, Fort Collins, Colorado, USA, Colorado State University,
Digital Collections, available at: http://hdl.handle.net/10217/48170 (last access: 28 January 2021), 248 pp., 2011.
a
Wood, N. B.: Supplementary data: What millimeter-wavelength
radar reflectivity reveals about snowfall: An information-centric analysis, Ver. 1.0.0, Zenodo,
https://doi.org/10.5281/zenodo.4302575, 2020. a
Wood, N. B., L'Ecuyer, T. S., Bliven, F. L., and Stephens, G. L.: Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity, Atmos. Meas. Tech., 6, 3635–3648, https://doi.org/10.5194/amt-6-3635-2013, 2013. a, b, c
Wood, N. B., L'Ecuyer, T. S., Heymsfield, A. J.,
Stephens, G. L., Hudak, D. R., and Rodriguez, P.: Estimating snow microphysical
properties using collocated multisensor observations, J. Geophys. Res.-Atmos., 119, 8941–8961,
https://doi.org/10.1002/2013JD021303, 2014. a, b, c
Zikmunda, J. and Vali, G.: Fall
patterns and fall velocities of rimed ice crystals, J. Atmos. Sci., 29, 1334–1347, 1972. a
Zikmunda, J. and Vali, G.:
Corrigendum, J. Atmos. Sci., 34, 1675, https://doi.org/10.1175/1520-0469(1977)034<1675:>2.0.CO;2, 1977. a
Short summary
Although millimeter-wavelength radar reflectivity observations are used to investigate snowfall properties, their ability to constrain specific properties has not been well-quantified. An information-focused retrieval
method shows how well snowfall properties, including rate and size distribution, are constrained by reflectivity. Sources of uncertainty in snowfall rate are dominated by uncertainties in the retrieved size distribution properties rather than by other retrieval assumptions.
Although millimeter-wavelength radar reflectivity observations are used to investigate snowfall...