Articles | Volume 15, issue 10
https://doi.org/10.5194/amt-15-3141-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-3141-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT
Daochun Yu
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Haitao Li
CORRESPONDING AUTHOR
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Key Laboratory of Electronics and Information Technology for Space Systems, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Baoquan Li
CORRESPONDING AUTHOR
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Key Laboratory of Electronics and Information Technology for Space Systems, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Mingyu Ge
Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Youli Tuo
Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Xiaobo Li
Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Wangchen Xue
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Yaning Liu
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Key Laboratory of Electronics and Information Technology for Space Systems, Chinese Academy of Sciences, Beijing 100190, China
Aoying Wang
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Yajun Zhu
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Space Weather, Beijing 100190, China
Bingxian Luo
National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing 100190, China
Related authors
No articles found.
Xiaolong Wei, Guoying Jiang, Yajun Zhu, Jiyao Xu, Weijun Liu, Tiancai Wang, Guangyi Zhu, and Wei Yuan
EGUsphere, https://doi.org/10.5194/egusphere-2025-3326, https://doi.org/10.5194/egusphere-2025-3326, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Scattered airglow can bias thermospheric wind observations by ground-based interferometers, especially when brightness is spatially uneven due to auroras. We simulated lower atmospheric scattering during two mid-latitude auroral events and confirmed that scattering leads to line-of-sight speed biases, thereby increasing the horizontal differences between opposite cardinal directions. This scattering impact needs to be carefully considered in thermospheric dynamics analysis.
Guangyi Zhu, Yajun Zhu, Martin Kaufmann, Tiancai Wang, Weijun Liu, Wei Yuan, Siyin Liu, Guotao Yang, and Jiyao Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2486, https://doi.org/10.5194/egusphere-2025-2486, 2025
Short summary
Short summary
Winds in the mesopause region (85–100 km altitude) drive upper-atmospheric dynamics and energy transfer. We present the Asymmetric Spatial Heterodyne Spectrometer, a ground-based instrument, to measure winds by observing the green airglow of atomic oxygen. Lab tests demonstrated the instrument achieves <2 m/s accuracy. Field measurements at a high-latitude site in China showed strong agreement with independent LiDAR data, confirming that the system delivers reliable wind retrievals.
Shuai Liu, Guoying Jiang, Bingxian Luo, Xiao Liu, Jiyao Xu, Yajun Zhu, and Wen Yi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2610, https://doi.org/10.5194/egusphere-2025-2610, 2025
Short summary
Short summary
Disruptions of Quasi-Biennial Oscillation modulate the migrating diurnal tide in the mesosphere and lower thermosphere. During the events, wavelengths and phases of the tide remain unchanged, but its amplitude strengthens. The enhancement of water vapor radiative heating, ozone radiative heating and latent heating may contribute to the amplification of the tide amplitude. These features provide insights into the dynamical coupling of troposphere, stratosphere, mesosphere and lower thermosphere.
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1417, https://doi.org/10.5194/egusphere-2025-1417, 2025
Short summary
Short summary
This study explores intense CGWs based on ground – based and multi – satellite observations over Southern Brazil, revealing significant airglow perturbations and strong momentum release. Triggered by deep convections and enabled by weaker wind field, these CGWs reached the mesopause and thermosphere. Consistent detections via OI and OH airglow emissions confirm their vertical propagation, while asymmetric thermosphere propagation is linked to Doppler-induced wavelength changes.
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024, https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Short summary
The 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption not only triggered broad-spectrum atmospheric waves but also generated unusual tsunamis which can generate atmospheric gravity waves (AGWs). Multiple strong atmospheric waves were observed in the far-field area of the 2022 HTHH volcano eruption in the upper atmosphere by a ground-based airglow imager network. AGWs caused by tsunamis can propagate to the mesopause region; there is a good match between atmospheric waves and tsunamis.
Cited articles
Aikin, A. C., Hedin, A. E., Kendig, D. J., and Drake, S.:
Thermospheric molecular oxygen measurements using the ultraviolet
spectrometer on the Solar Maximum Mission spacecraft, J. Geophys. Res.-Space
Phys., 98, 17607–17614, https://doi.org/10.1029/93JA01468, 1993. a
Arnaud, K., Dorman, B., and Gordon, C.: XSPEC: An X-ray spectral fitting
package, Astrophysics Source Code Library, record ascl:9910.005, 1999. a
Baron, P., Ochiai, S., Dupuy, E., Larsson, R., Liu, H., Manago, N., Murtagh, D., Oyama, S., Sagawa, H., Saito, A., Sakazaki, T., Shiotani, M., and Suzuki, M.: Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2), Atmos. Meas. Tech., 13, 219–237, https://doi.org/10.5194/amt-13-219-2020, 2020. a
Bartman, F. L., Chaney, L. W., Jones, L. M., and Liu, V. C.: Upper-Air
Density and Temperature by the Falling-Sphere Method, J. Appl.
Phys., 27, 706–712, https://doi.org/10.1063/1.1722470, 1956. a
Bayes, T. and Price, R.: An Essay towards Solving a Problem in the
Doctrine of Chances, By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr.
Price, in a Letter to John Canton, A. M. F. R. S., Phil. Trans., 53, 370–418,
1763. a
Berger, C., Biancale, R., Barlier, F., and Ill, M.: Improvement of the
empirical thermospheric model DTM: DTM94 – a comparative review of various
temporal variations and prospects in space geodesy applications, J. Geod., 72,
161–178, https://doi.org/10.1007/s001900050158, 1998. a
Berger, M. J. and Hubbell, J. H.: XCOM: Photon cross sections on a personal
computer, National Bureau of Standards, Washington, DC (USA). Center for Radiation Research, https://doi.org/10.2172/6016002, 1987. a
Berger, M. J., Hubbell, J., Seltzer, S., Chang, S. M., Coursey, J., Sukumar,
J. S., Zucker, D., and Olsen, K.: XCOM: Photon Cross Section Database
(version 1.5), https://doi.org/10.18434/T48G6X, 2010. a
Bruinsma, S., Thuillier, G., and Barlier, F.: The DTM-2000 empirical
thermosphere model with new data assimilation and constraints at lower
boundary: accuracy and properties, J. Atmos. Sol. Terr. Phys., 65, 1053–1070,
https://doi.org/10.1016/S1364-6826(03)00137-8, 2003. a
Cao, X., Jiang, W., Meng, B., Zhang, W., Luo, T., Yang, S.,
Zhang, C., Gu, Y., Sun, L., Liu, X., Yang, J., Li, X., Tan, Y.,
Liu, S., Du, Y., Lu, F., Xu, Y., Guan, J., Zhang, S., Wang, H.,
Li, T., Zhang, C., Wen, X., Qu, J., Song, L., Li, X., Ge, M.,
Zhou, Y., Xiong, S., Zhang, S., Zhang, Y., Cheng, Z., Zhang, F.,
Li, M., Liang, X., Gao, M., Yang, E., Liu, X., Liu, H., Yang,
Y., and Zhang, F.: The Medium Energy X-ray telescope (ME) onboard the
Insight-HXMT astronomy satellite, Sci. China-Phys. Mech. Astron., 63, 249504,
https://doi.org/10.1007/s11433-019-1506-1, 2020. a
Cash, W.: Parameter estimation in astronomy through application of the
likelihood ratio., Astrophys. J., 228, 939–947, https://doi.org/10.1086/156922, 1979. a
Chen, Y., Cui, W., Li, W., Wang, J., Xu, Y., Lu, F., Wang, Y.,
Chen, T., Han, D., Hu, W., Zhang, Y., Huo, J., Yang, Y., Li,
M., Lu, B., Zhang, Z., Li, T., Zhang, S., Xiong, S., Zhang, S.,
Xue, R., Zhao, X., Zhu, Y., Zhu, Y., Liu, H., Yang, Y., and
Zhang, F.: The Low Energy X-ray telescope (LE) onboard the Insight-HXMT
astronomy satellite, Sci. China-Phys. Mech. Astron., 63, 249505,
https://doi.org/10.1007/s11433-019-1469-5, 2020. a, b, c
Chib, S. and Greenberg, E.: Understanding the Metropolis-Hastings Algorithm, Am.
Stat., 49, 327–335, https://doi.org/10.1080/00031305.1995.10476177, 1995. a
Chou, M. Y., Lin, C. C. H., Tsai, H. F., and Lin, C. Y.: Ionospheric
electron density inversion for Global Navigation Satellite Systems radio
occultation using aided Abel inversions, J. Geophys. Res.,
122, 1386–1399, 2017. a
Clúa de Gonzalez, A. L., Gonzalez, W. D., Dutra, S. L. G., and
Tsurutani, B. T.: Periodic variation in the geomagnetic activity: A study
based on the Ap index, J. Geophys. Res.-Space Phys., 98, 9215–9232,
https://doi.org/10.1029/92JA02200, 1993. a
Cochran, W. G.: The χ2 Test of Goodness of Fit, Ann. Math. Stat., 23, 315–345,
1952. a
Davis, M. C. and White, J. T.: X-43A Flight-Test-Determined Aerodynamic
Force and Moment Characteristics at Mach 7.0, J. Spacecr. Rockets, 45,
472–484, https://doi.org/10.2514/1.30413, 2008. a
Degenstein, D. A., Bourassa, A. E., Roth, C., Zawada, D., and Rieger,
L. A.: Comparing coincident SAGE III ISS measurements of stratospheric trace
species with those measured by OSIRIS, in: AGU Fall Meeting Abstracts, vol.
2018, pp. A41I–3065, 2018. a
Determan, J. R., Budzien, S. A., Kowalski, M. P., Lovellette, M. N.,
Ray, P. S., Wolff, M. T., Wood, K. S., Titarchuk, L., and
Bandyopadhyay, R.: Measuring atmospheric density with X-ray occultation
sounding, J. Geophys. Res.-Space Phys., 112, A06323, https://doi.org/10.1029/2006JA012014,
2007. a, b, c, d, e, f
Doornbos, E. and Klinkrad, H.: Modelling of space weather effects on
satellite drag, Adv. Space Res., 37, 1229–1239,
https://doi.org/10.1016/j.asr.2005.04.097, 2006. a
Doornbos, E., Klinkrad, H., and Visser, P.: Use of two-line element data for
thermosphere neutral density model calibration, Adv. Space Res., 41,
1115–1122, https://doi.org/10.1016/j.asr.2006.12.025, 2008. a
Dunkley, J., Bucher, M., Ferreira, P. G., Moodley, K., and Skordis, C.: Fast
and reliable Markov chain Monte Carlo technique for cosmological parameter
estimation, Mon. Not. R. Astron. Soc., 356, 925–936,
https://doi.org/10.1111/j.1365-2966.2004.08464.x, 2005. a
Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M.,
Mlynczak, M. G., Bernath, P. F., Chu, X., Doornbos, E., Funke, B.,
Goncharenko, L. P., Hervig, M. E., Schwartz, M. J., Sheese, P. E.,
Vargas, F., Williams, B. P., and Yuan, T.: NRLMSIS 2.0: A Whole
Atmosphere Empirical Model of Temperature and Neutral Species Densities,
Earth Space Sci., 8, e01321, https://doi.org/10.1029/2020EA001321, 2021. a
Faire, A. C. and Champion, K. S. W.: Falling sphere measurements of
atmospheric density temperature and pressure up to 115 km, in: Space
Research Conference, p. 1039, 1965. a
Faucher, G. A., Morrissey, J. F., and Stark, C. N.: Falling sphere
density measurements, J. Geophys. Res., 72, 299–305,
https://doi.org/10.1029/JZ072i001p00299, 1967. a
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.: emcee: The
MCMC Hammer, Pub. Astro. Soc. Pacific, 125,
306, https://doi.org/10.1086/670067, 2013. a
Godet, O., Beardmore, A. P., Abbey, A. F., Osborne, J. P., Cusumano,
G., Pagani, C., Capalbi, M., Perri, M., Page, K. L., Burrows,
D. N., Campana, S., Hill, J. E., Kennea, J. A., and Moretti, A.:
Modelling the spectral response of the Swift-XRT CCD camera: experience
learnt from in-flight calibration, Astron. Astrophys., 494, 775–797,
https://doi.org/10.1051/0004-6361:200811157, 2009. a
Hajj, G. A. and Romans, L. J.: Ionospheric electron density profiles
obtained with the Global Positioning System: Results from the GPS/MET
experiment, Radio Sci., 33, 175–190, 1998. a
Haycock, O. C., Westlund, C. D., Pound, E. F., and Woolley, R. H.:
Falling Sphere for Measuring Atmospheric Density, Rev. Sci.
Instrum., 39, 1094–1099, https://doi.org/10.1063/1.1683591, 1968. a
Hays, P. and Roble, R.: Observation of mesospheric ozone at low latitudes,
Planet Space Sci., 21, 273–279,
https://doi.org/10.1016/0032-0633(73)90011-1, 1973. a
Hedin, A. E.: MSIS-86 thermospheric model, J. Geophys. Res.-Space Phys., 92,
4649–4662, https://doi.org/10.1029/JA092iA05p04649, 1987. a
Hogg, D. W. and Foreman-Mackey, D.: Data Analysis Recipes: Using Markov
Chain Monte Carlo, Astrophys. J. Suppl. Ser., 236, 11,
https://doi.org/10.3847/1538-4365/aab76e, 2018. a
Holland, A. and Pool, P.: A new family of swept charge devices (SCDs) for
x-ray spectroscopy applications, in: High Energy, Optical, and Infrared
Detectors for Astronomy III, edited by Dorn, D. A. and Holland, A. D.,
vol. 7021 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, p. 702117, https://doi.org/10.1117/12.797077, 2008. a
HXMT: Proposal, HXMT [data set], http://archive.hxmt.cn/proposal, last access: 7 May 2022. a
Jacchia, L. G.: New Static Models of the Thermosphere and Exosphere with
Empirical Temperature Profiles, SAO Special Report, 313, 1970. a
Jacchia, L. G.: Thermospheric Temperature, Density, and Composition: New
Models, SAO Special Report, 375, 1977. a
Kalafatoglu Eyiguler, E. C., Shim, J. S., Kuznetsova, M. M., Kaymaz,
Z., Bowman, B. R., Codrescu, M. V., Solomon, S. C., Fuller-Rowell,
T. J., Ridley, A. J., Mehta, P. M., and Sutton, E. K.: Quantifying the
Storm Time Thermospheric Neutral Density Variations Using Model and
Observations, Space Weather, 17, 269–284, https://doi.org/10.1029/2018SW002033, 2019. a
Katsuda, S., Fujiwara, H., Ishisaki, Y., Yoshitomo, M., Mori, K.,
Motizuki, Y., Sato, K., Tashiro, M. S., and Terada, Y.: New
Measurement of the Vertical Atmospheric Density Profile From Occultations of
the Crab Nebula With X Ray Astronomy Satellites Suzaku and Hitomi, J. Geophys.
Res.-Space Phys., 126, e28886, https://doi.org/10.1029/2020JA028886, 2021. a, b, c, d, e, f
Kirsch, M. G., Briel, U. G., Burrows, D., Campana, S., Cusumano, G.,
Ebisawa, K., Freyberg, M. J., Guainazzi, M., Haberl, F., Jahoda,
K., Kaastra, J., Kretschmar, P., Larsson, S., Lubiński, P.,
Mori, K., Plucinsky, P., Pollock, A. M., Rothschild, R., Sembay,
S., Wilms, J., and Yamamoto, M.: Crab: the standard x-ray candle with
all (modern) x-ray satellites, in: UV, X-Ray, and Gamma-Ray Space
Instrumentation for Astronomy XIV, edited by: Siegmund, O. H. W., vol. 5898
of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, 22–33, https://doi.org/10.1117/12.616893, 2005. a
Krueger, A.: The mean ozone distribution from several series of rocket
soundings to 52 km at latitudes from 58∘ S to 64∘ N, Pure Appl. Geophys.,
106–108, 1272–1280, 1973. a
Kyrölä, E., Tamminen, J., Sofieva, V., Bertaux, J. L., Hauchecorne, A., Dalaudier, F., Fussen, D., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Guirlet, M., Fehr, T., and Saavedra de Miguel, L.: GOMOS O3, NO2, and NO3 observations in 2002–2008, Atmos. Chem. Phys., 10, 7723–7738, https://doi.org/10.5194/acp-10-7723-2010, 2010. a
Lei, J., Syndergaard, S., Burns, A. G., Solomon, S. C., Wang, W.,
Zeng, Z., Roble, R. G., Wu, Q., Kuo, Y. H., Holt, J. M., Zhang,
S. R., Hysell, D. L., Rodrigues, F. S., and Lin, C. H.: Comparison of
COSMIC ionospheric measurements with ground-based observations and model
predictions : Preliminary results, J. Geophys. Res., 112, A07308, https://doi.org/10.1029/2006JA012240, 2007. a
Li, T., Xiong, S., Zhang, S., Lu, F., Song, L., Cao, X., Chang,
Z., Chen, G., Chen, L., Chen, T., Chen, Y., Chen, Y., Chen, Y.,
Cui, W., Cui, W., Deng, J., Dong, Y., Du, Y., Fu, M., Gao, G.,
Gao, H., Gao, M., Ge, M., Gu, Y., Guan, J., Guo, C., Han, D.,
Hu, W., Huang, Y., Huo, J., Jia, S., Jiang, L., Jiang, W., Jin,
J., Jin, Y., Li, B., Li, C., Li, G., Li, M., Li, W., Li, X.,
Li, X., Li, X., Li, Y., Li, Z., Li, Z., Liang, X., Liao, J.,
Liu, C., Liu, G., Liu, H., Liu, S., Liu, X., Liu, Y., Liu, Y.,
Lu, B., Lu, X., Luo, T., Ma, X., Meng, B., Nang, Y., Nie, J.,
Ou, G., Qu, J., Sai, N., Sun, L., Tan, Y., Tao, L., Tao, W.,
Tuo, Y., Wang, G., Wang, H., Wang, J., Wang, W., Wang, Y., Wen,
X., Wu, B., Wu, M., Xiao, G., Xu, H., Xu, Y., Yan, L., Yang,
J., Yang, S., Yang, Y., Zhang, A., Zhang, C., Zhang, C., Zhang,
F., Zhang, H., Zhang, J., Zhang, Q., Zhang, S., Zhang, T., Zhang,
W., Zhang, W., Zhang, W., Zhang, Y., Zhang, Y., Zhang, Y., Zhang,
Y., Zhang, Z., Zhang, Z., Zhao, H., Zhao, J., Zhao, X., Zheng,
S., Zhu, Y., Zhu, Y., and Zou, C.: Insight-HXMT observations of the
first binary neutron star merger GW170817, Sci. China-Phys. Mech. Astron., 61,
31011, https://doi.org/10.1007/s11433-017-9107-5, 2018. a
Li, X., Li, X., Tan, Y., Yang, Y., Ge, M., Zhang, J., Tuo, Y., Wu, B., Liao,
J., Zhang, Y., Song, L., Zhang, S., Qu, J., nan Zhang, S., Lu, F., Xu, Y.,
Liu, C., Cao, X., Chen, Y., Nie, J., Zhao, H., and Li, C.: In-flight
calibration of the Insight-Hard X-ray Modulation Telescope, J. High Energy
Astrophys., 27, 64–76, https://doi.org/10.1016/j.jheap.2020.02.009,
2020. a
Licata, R. J., Tobiska, W. K., and Mehta, P. M.: Benchmarking
Forecasting Models for Space Weather Drivers, Space Weather, 18, e02496,
https://doi.org/10.1029/2020SW002496, 2020. a
Liu, C., Zhang, Y., Li, X., Lu, X., Chang, Z., Li, Z., Zhang, A.,
Jin, Y., Yu, H., Zhang, Z., Fu, M., Chen, Y., Ji, J., Xu, Y.,
Deng, J., Shang, R., Liu, G., Lu, F., Zhang, S., Dong, Y., Li,
T., Wu, M., Li, Y., Wang, H., Wu, B., Zhang, Y., Zhang, Z.,
Xiong, S., Liu, Y., Zhang, S., Liu, H., Yang, Y., and Zhang, F.:
The High Energy X-ray telescope (HE) onboard the Insight-HXMT astronomy
satellite, Sci. China-Phys. Mech. Astron., 63, 249503,
https://doi.org/10.1007/s11433-019-1486-x, 2020. a
Lumpe, J., Fromm, M., Hoppel, K., Bevilacqua, R., Randall, C., Browell, E.,
Grant, W., McGee, T., Burris, J., Twigg, L., Richard, E., Toon, G., Margitan,
J., Şen, B., Pfeilsticker, K., Boesch, H., Fitzenberger, R., Goutail, F.,
and Pommereau, J.-P.: Comparison of POAM III ozone measurements with
correlative aircraft and baloon data during SOLVE, J. Geophys.
Res.-Atmos., 107, SOL 59–1, https://doi.org/10.1029/2001JD000472, 2002. a
Lumpe, J. D., Floyd, L. E., Herring, L. C., Gibson, S. T., and Lewis,
B. R.: Measurements of thermospheric molecular oxygen from the Solar
Ultraviolet Spectral Irradiance Monitor, J. Geophys. Res.-Atmos., 112, D16308,
https://doi.org/10.1029/2006JD008076, 2007. a
McCormick, M. P., Lei, L., Hill, M. T., Anderson, J., Querel, R., and Steinbrecht, W.: Early results and validation of SAGE III-ISS ozone profile measurements from onboard the International Space Station, Atmos. Meas. Tech., 13, 1287–1297, https://doi.org/10.5194/amt-13-1287-2020, 2020. a
McHugh, M., Gordley, L., Hervig, M., and Russell, J.: Initial Results
from SOFIE/AIM, in: 10th Biennial HITRAN Conference, p. 30, 22–24 June 2008, Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, https://doi.org/10.5281/zenodo.17543, 2008. a
Meier, R. R., Picone, J. M., Drob, D., Bishop, J., Emmert, J. T.,
Lean, J. L., Stephan, A. W., Strickland, D. J., Christensen, A. B.,
Paxton, L. J., Morrison, D., Kil, H., Wolven, B., Woods, T. N.,
Crowley, G., and Gibson, S. T.: Remote Sensing of Earth's Limb by
TIMED/GUVI: Retrieval of thermospheric composition and temperature, Earth
Space Sci., 2, 1–37, https://doi.org/10.1002/2014EA000035, 2015. a
Meyer, J., Bracher, A., Rozanov, A., Schlesier, A. C., Bovensmann, H., and Burrows, J. P.: Solar occultation with SCIAMACHY: algorithm description and first validation, Atmos. Chem. Phys., 5, 1589–1604, https://doi.org/10.5194/acp-5-1589-2005, 2005. a
Meyer, M., Horns, D., and Zechlin, H. S.: The Crab Nebula as a standard
candle in very high-energy astrophysics, Astron. Astrophys., 523, A2,
https://doi.org/10.1051/0004-6361/201014108, 2010. a
Mighell, K. J.: Parameter Estimation in Astronomy with Poisson-distributed
Data. I.The Statistic,
Astrophys. J., 518, 380–393, https://doi.org/10.1086/307253, 1999. a
Mori, K., Tsunemi, H., Katayama, H., Burrows, D. N., Garmire, G. P.,
and Metzger, A. E.: An X-Ray Measurement of Titan's Atmospheric Extent
from Its Transit of the Crab Nebula, Astrophys. J., 607, 1065–1069,
https://doi.org/10.1086/383521, 2004. a
Morrison, R. and McCammon, D.: Interstellar photoelectric absorption cross
sections, 0.03–10 keV, Astrophys. J., 270, 119–122, https://doi.org/10.1086/161102,
1983. a
Noël, S., Bramstedt, K., Rozanov, A., Bovensmann, H., and Burrows, J. P.: Water vapour profiles from SCIAMACHY solar occultation measurements derived with an onion peeling approach, Atmos. Meas. Tech., 3, 523–535, https://doi.org/10.5194/amt-3-523-2010, 2010. a
Olamaie, M., Feroz, F., Grainge, K. J. B., Hobson, M. P., Sanders, J. S., and
Saunders, R. D. E.: bayes-x: a Bayesian inference tool for the analysis of
X-ray observations of galaxy clusters, Mon. Not. R. Astron. Soc., 446,
1799–1819, https://doi.org/10.1093/mnras/stu2146, 2014. a
Palacios, J., Guerrero, A., Cid, C., Saiz, E., and Cerrato, Y.: Defining scale thresholds for geomagnetic storms through statistics, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2018-92, 2018. a
Pearce, J. B.: Reply [to “Discussion of paper by J. B.
Pearce, “Rocket measurement of nitric oxide between 60 and 96
kilometers””], J. Geophys. Res.-Space Phys.,
74, 4805–4805, https://doi.org/10.1029/JA074i019p04805, 1969. a
Pearson, K.: X. On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling, Phil. Mag., 50,
157–175, https://doi.org/10.1080/14786440009463897, 1900. a
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.:
NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and
scientific issues, J. Geophys. Res.-Space Phys., 107, 1468,
https://doi.org/10.1029/2002JA009430, 2002. a, b
Prölss, G. W.: Density Perturbations in the Upper Atmosphere Caused by
the Dissipation of Solar Wind Energy, Surv. Geophys., 32, 101–195,
https://doi.org/10.1007/s10712-010-9104-0, 2011. a
Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Lee,
C. O., and Dunn, P. A.: MAVEN SEP Observations of Scorpius X-1 X-Rays at
Mars: A Midatmosphere Occultation Analysis Technique, Geophys. Res. Lett., 47,
e88927, https://doi.org/10.1029/2020GL088927, 2020. a
Renard, J.-B., Brogniez, C., Catoire, V., Fussen, D., Goutail, F., Oelhaf, H.,
Pommereau, J.-P., Roscoe, H., Wetzel, G., Chartier, M., and Robert, C.:
Validation of GOMOS-Envisat vertical profiles of O3, NO2, NO3, and aerosol
extinction using balloon-borne instruments and analysis of the retrievals,
J. Geophys. Res., 113, A02302, https://doi.org/10.1029/2007JA012345, 2008. a
Rezac, L., Kutepov, A., Russell, J. M., Feofilov, A. G., Yue, J., and
Goldberg, R. A.: Simultaneous retrieval of T(p) and CO2 VMR from
two-channel non-LTE limb radiances and application to daytime SABER/TIMED
measurements, J. Atmos. Sol. Terr. Phys., 130, 23–42,
https://doi.org/10.1016/j.jastp.2015.05.004, 2015. a
Rhoden, E., Forbes, J., and Marcos, F.: The influence of geomagnetic and solar
variabilities on lower thermosphere density, J. Atmos.
Sol.-Terr. Phys., 62, 999–1013,
https://doi.org/10.1016/S1364-6826(00)00066-3, 2000. a
Riley, C. J. and Dejarnette, F. R.: Engineering Aerodynamic Heating Method
for Hypersonic Flow, J. Spacecr. Rock., 29, 327–334, https://doi.org/10.2514/3.26355,
1992. a
Rong, P., Russell III, J., Marshall, B., Siskind, D., Hervig, M., Gordley, L.,
Bernath, P., and Walker, K.: Version 1.3 AIM SOFIE measured methane (CH4):
Validation and Seasonal Climatology: SOFIE CH4 validation, J.
Geophys. Res.-Atmos., 121, https://doi.org/10.1002/2016JD025415, 2016. a
Rusch, D. W., Randall, C. E., Bevilacqua, R. M., Hoppel, K. W.,
Lumpe, J. D., and Shettle, E.: Validation of POAM III ozone: Comparisons
with ozonesondes and satellite data, in: AGU Fall Meeting Abstracts,
2001, A42A–0092, 2001. a
Russell, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, J. J., and
Esplin, R. W.: Overview of the SABER experiment and preliminary
calibration results, in: Optical Spectroscopic Techniques and
Instrumentation for Atmospheric and Space Research III, edited by: Larar,
A. M., vol. 3756 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, 277–288, https://doi.org/10.1117/12.366382, 1999. a, b
Sharma, S.: Markov Chain Monte Carlo Methods for Bayesian Data Analysis in
Astronomy, Annu. Rev. Astron. Astrophys., 55, 213–259,
https://doi.org/10.1146/annurev-astro-082214-122339, 2017. a, b
Tang, G., Li, X., Cao, J., Liu, S., Chen, G., Man, H., Zhang, X.,
Shi, S., Sun, J., Li, Y., and Calabia, A.: APOD mission status and
preliminary results, Sci. China Earth Sci., 63, 257–266,
https://doi.org/10.1007/s11430-018-9362-6, 2020. a
Tapping, K. F.: The 10.7 cm solar radio flux (F10.7), Space Weather,
11, 394–406, https://doi.org/10.1002/swe.20064, 2013. a
Watanabe, K.: Ultraviolet Absorption Processes in the Upper Atmosphere, Adv.
Geophys., 5, 153–221, https://doi.org/10.1016/S0065-2687(08)60078-3, 1958. a
Yan, L. L., Ge, M. Y., Lu, F. J., Zheng, S. J., Tuo, Y. L., Li,
Z. J., Song, L. M., and Qu, J. L.: Time Evolution of the X-Ray and
γ-Ray Fluxes of the Crab Pulsar, Astrophys. J., 865, 21,
https://doi.org/10.3847/1538-4357/aad911, 2018. a
Yu, D., Li, H., Li, B., Ge, M., Tuo, Y., Li, X., Xue, W., and Liu, Y.: New
method for Earth neutral atmospheric density retrieval based on energy
spectrum fitting during occultation with LE/Insight-HXMT, Adv. Space
Res., 69, 3426–3434, https://doi.org/10.1016/j.asr.2022.02.030,
2022. a, b
Zeitler, L., Corbin, A., Vielberg, K., Rudenko, S., Löcher, A.,
Bloßfeld, M., Schmidt, M., Kusche, J., and Forootan, E.: Scale
factors of the thermospheric neutral density – a comparison of SLR and
accelerometer solutions, in: EGU General Assembly Conference Abstracts, EGU
General Assembly Conference Abstracts, 19–30 April 2021, EGU21–8310, 2021. a
Zhang, S., Zhang, S. N., Lu, F. J., Li, T. P., Song, L. M., Xu,
Y. P., Wang, H. Y., Qu, J. L., Liu, C. Z., Chen, Y., Cao, X. L.,
Zhang, F., Xiong, S. L., Ge, M. Y., Chen, Y. P., Liao, J. Y.,
Nie, J. Y., Zhao, H. S., Jia, S. M., Li, X. B., Guan, J., Li,
C. K., Zhang, J., Jin, J., Wang, G. F., Zheng, S. J., Ma, X.,
Tao, L., and Huang, Y.: The insight-HXMT mission and its recent
progresses, in: Space Telescopes and Instrumentation 2018: Ultraviolet to
Gamma Ray, edited by: den Herder, J.-W. A., Nikzad, S., and Nakazawa,
K., vol. 10699 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, p. 106991U, https://doi.org/10.1117/12.2311835, 2018. a, b
Zhang, S.-N., Li, T., Lu, F., Song, L., Xu, Y., Liu, C., Chen,
Y., Cao, X., Bu, Q., Chang, Z., Chen, G., Chen, L., Chen, T.,
Chen, Y., Chen, Y., Cui, W., Cui, W., Deng, J., Dong, Y., Du,
Y., Fu, M., Gao, G., Gao, H., Gao, M., Ge, M., Gu, Y., Guan,
J., Gungor, C., Guo, C., Han, D., Hu, W., Huang, Y., Huo, J.,
Jia, S., Jiang, L., Jiang, W., Jin, J., Jin, Y., Li, B., Li,
C., Li, G., Li, M., Li, W., Li, X., Li, X., Li, X., Li, Y.,
Li, Z., Li, Z., Liang, X., Liao, J., Liu, G., Liu, H., Liu, S.,
Liu, X., Liu, Y., Liu, Y., Lu, B., Lu, X., Luo, T., Ma, X.,
Meng, B., Nang, Y., Nie, J., Ou, G., Qu, J., Sai, N., Shang,
R., Shen, G., Sun, L., Tan, Y., Tao, L., Tuo, Y., Wang, C.,
Wang, C., Wang, G., Wang, H., Wang, J., Wang, W., Wang, Y.,
Wen, X., Wu, B., Wu, B., Wu, M., Xiao, G., Xiong, S., Yan, L.,
Yang, J., Yang, S., Yang, Y., Yi, Q., Yuan, B., Zhang, A.,
Zhang, C., Zhang, C., Zhang, F., Zhang, H., Zhang, J., Zhang, Q.,
Zhang, S., Zhang, S., Zhang, T., Zhang, W., Zhang, W., Zhang, W.,
Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Y., Zhang, Z., Zhang, Z.,
Zhang, Z., Zhao, H., Zhao, X., Zheng, S., Zhou, J., Zhu, Y.,
Zhu, Y., Zhuang, R., and Insight-HXMT Team: Overview to the Hard X-ray
Modulation Telescope (Insight-HXMT) Satellite, Sci. China-Phys. Mech. Astron.,
63, 249502, https://doi.org/10.1007/s11433-019-1432-6, 2020. a, b, c, d
Zhao, X.-F., Zhu, Y.-X., Han, D.-W., Cui, W.-W., Li, W., Wang, J.,
Wang, Y.-S., Zhang, Y., Yang, Y.-J., Lu, B., Huo, J., Zhang,
Z.-L., Chen, T.-X., Li, M.-S., Lv, Z.-H., and Chen, Y.: Studies on
the time response distribution of Insight-HXMT/LE, J. High Energy Astrophys.,
23, 23–28, https://doi.org/10.1016/j.jheap.2019.08.002, 2019. a, b
Short summary
In this work, the measurement of vertical atmospheric density profiles using X-ray Earth occultation is investigated. The Earth’s density profile for the lower thermosphere is obtained with Insight-HXMT. It is shown that the Insight-HXMT X-ray satellite of China can be used as an X-ray atmospheric diagnostics instrument for the upper atmosphere. The Insight-HXMT satellite can, with other X-ray astronomical satellites in orbit, form a network for X-ray Earth occultation sounding in the future.
In this work, the measurement of vertical atmospheric density profiles using X-ray Earth...