Articles | Volume 15, issue 17
https://doi.org/10.5194/amt-15-5019-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5019-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Real-world wintertime CO, N2O, and CO2 emissions of a central European village
Institute for Nuclear Research, Debrecen, 4026, Hungary
Institute of Earth Physics and Space Science, Sopron, 9400, Hungary
Zoltán Barcza
Department of Meteorology, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
Excellence Center, Faculty of Science, ELTE Eötvös Loránd University, Martonvásár, 2462, Hungary
Faculty of Forestry and Wood Sciences, Czech University of Life
Sciences Prague, Prague, 165 21, Czech Republic
Zita Ferenczi
Hungarian Meteorological Service, Budapest, 1024, Hungary
Roland Hollós
Department of Meteorology, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
Centre for Agricultural Research, Agricultural Institute,
Martonvásár, 2462, Hungary
Doctoral School of Environmental Sciences, ELTE Eötvös
Loránd University, Budapest, 1117, Hungary
Anikó Kern
Faculty of Forestry and Wood Sciences, Czech University of Life
Sciences Prague, Prague, 165 21, Czech Republic
Department of Geophysics and Space Sciences, Institute of Geography
and Earth Sciences, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
Natascha Kljun
Centre for Environmental and Climate Science, Lund University, Lund, 223 62, Sweden
Related authors
Samuel Upton, Markus Reichstein, Wouter Peters, Santiago Botía, Jacob A. Nelson, Sophia Walther, Martin Jung, Fabian Gans, László Haszpra, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2097, https://doi.org/10.5194/egusphere-2025-2097, 2025
Short summary
Short summary
We create a hybrid ecosystem-level carbon flux model using both eddy-covariance observations and observations of the atmospheric mole fraction of CO2 at three tall-tower observatories. Our study uses an atmospheric transport model (STILT) to connect the atmospheric signal to the ecosystem-level model. We show that this inclusion of atmospheric information meaningfully improves the model's representation of the interannual variability of the global net flux of CO2.
László Haszpra
Atmos. Meas. Tech., 17, 4629–4647, https://doi.org/10.5194/amt-17-4629-2024, https://doi.org/10.5194/amt-17-4629-2024, 2024
Short summary
Short summary
The paper evaluates a 30-year-long atmospheric CO2 data series from a mid-continental central European site, Hegyhátsál (HUN). It presents the site-specific features observed in the long-term evolution of the atmospheric CO2 concentration. Since the measurement data are widely used in atmospheric inverse models and budget calculations all around the world, the paper provides potentially valuable information for model tuning and interpretation of the model results.
László Haszpra and Ernő Prácser
Atmos. Meas. Tech., 14, 3561–3571, https://doi.org/10.5194/amt-14-3561-2021, https://doi.org/10.5194/amt-14-3561-2021, 2021
Short summary
Short summary
Most of the tall-tower greenhouse gas observatories apply a single gas analyzer for the sequential sampling of several intakes along the tower. The non-continuous sampling at each intake introduces excess uncertainty to the calculated hourly-average concentrations used in several applications. Based on real-world measurements, the paper systematically assesses this type of uncertainty.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Beata Bukosa, Sara Mikaloff-Fletcher, Gordon Brailsford, Dan Smale, Elizabeth D. Keller, W. Troy Baisden, Miko U. F. Kirschbaum, Donna L. Giltrap, Lìyǐn Liáng, Stuart Moore, Rowena Moss, Sylvia Nichol, Jocelyn Turnbull, Alex Geddes, Daemon Kennett, Dóra Hidy, Zoltán Barcza, Louis A. Schipper, Aaron M. Wall, Shin-Ichiro Nakaoka, Hitoshi Mukai, and Andrea Brandon
Atmos. Chem. Phys., 25, 6445–6473, https://doi.org/10.5194/acp-25-6445-2025, https://doi.org/10.5194/acp-25-6445-2025, 2025
Short summary
Short summary
We used atmospheric measurements and inverse modelling to estimate New Zealand's carbon dioxide (CO2) emissions and removals from 2011 to 2020. Our study reveals that New Zealand's land absorbs more CO2 than previously estimated, particularly in areas dominated by indigenous forests. Our results highlight gaps in current national CO2 estimates and methods, suggesting a need for further research to improve emissions reports and refine approaches to track progress toward climate mitigation goals.
Samuel Upton, Markus Reichstein, Wouter Peters, Santiago Botía, Jacob A. Nelson, Sophia Walther, Martin Jung, Fabian Gans, László Haszpra, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2097, https://doi.org/10.5194/egusphere-2025-2097, 2025
Short summary
Short summary
We create a hybrid ecosystem-level carbon flux model using both eddy-covariance observations and observations of the atmospheric mole fraction of CO2 at three tall-tower observatories. Our study uses an atmospheric transport model (STILT) to connect the atmospheric signal to the ecosystem-level model. We show that this inclusion of atmospheric information meaningfully improves the model's representation of the interannual variability of the global net flux of CO2.
Rainer Hilland, Josh Hashemi, Stavros Stagakis, Dominik Brunner, Lionel Constantin, Natascha Kljun, Betty Molinier, Samuel Hammer, Lukas Emmenegger, and Andreas Christen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1088, https://doi.org/10.5194/egusphere-2025-1088, 2025
Short summary
Short summary
We present a study of simultaneously measured fluxes of carbon dioxide (CO2) and co-emitted species in the city of Zurich. Flux measurements of CO2 alone can’t be attributed to specific emission sectors, such as road transport or residential heating. We present a model which uses the measured ratios of CO2 to carbon monoxide (CO) and nitrogen oxides (NOx) as well as sector-specific reference ratios, to attribute measured fluxes to their emission sectors.
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošel'a, Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev., 17, 7317–7346, https://doi.org/10.5194/gmd-17-7317-2024, https://doi.org/10.5194/gmd-17-7317-2024, 2024
Short summary
Short summary
We developed a multi-objective calibration approach leading to robust parameter values aiming to strike a balance between their local precision and broad applicability. Using the Biome-BGCMuSo model, we tested the calibrated parameter sets for simulating European beech forest dynamics across large environmental gradients. Leveraging data from 87 plots and five European countries, the results demonstrated reasonable local accuracy and plausible large-scale productivity responses.
László Haszpra
Atmos. Meas. Tech., 17, 4629–4647, https://doi.org/10.5194/amt-17-4629-2024, https://doi.org/10.5194/amt-17-4629-2024, 2024
Short summary
Short summary
The paper evaluates a 30-year-long atmospheric CO2 data series from a mid-continental central European site, Hegyhátsál (HUN). It presents the site-specific features observed in the long-term evolution of the atmospheric CO2 concentration. Since the measurement data are widely used in atmospheric inverse models and budget calculations all around the world, the paper provides potentially valuable information for model tuning and interpretation of the model results.
Julia Kelly, Stefan H. Doerr, Johan Ekroos, Theresa S. Ibáñez, Md. Rafikul Islam, Cristina Santín, Margarida Soares, and Natascha Kljun
EGUsphere, https://doi.org/10.5194/egusphere-2024-2016, https://doi.org/10.5194/egusphere-2024-2016, 2024
Preprint archived
Short summary
Short summary
We measured soil carbon fluxes during the first four years after a wildfire in the Swedish boreal forest. Soil CO2 emissions decreased substantially only when trees were killed by fire or by post-fire logging, but not when trees survived the fire and were left standing. Soil methane flux was not affected by fire. Logging trees already killed by fire had no additional impact on soil carbon fluxes. Post-fire forest management strategy impacted vegetation regrowth and carbon dynamics.
Ross Petersen, Thomas Holst, Meelis Mölder, Natascha Kljun, and Janne Rinne
Atmos. Chem. Phys., 23, 7839–7858, https://doi.org/10.5194/acp-23-7839-2023, https://doi.org/10.5194/acp-23-7839-2023, 2023
Short summary
Short summary
We investigate variability in the vertical distribution of volatile organic compounds (VOCs) in boreal forest, determined through multiyear measurements at several heights in a boreal forest in Sweden. VOC source/sink seasonality in canopy was explored using these vertical profiles and with measurements from a collection of sonic anemometers on the station flux tower. Our results show seasonality in the source/sink distribution for several VOCs, such as monoterpenes and water-soluble compounds.
Janne Rinne, Patryk Łakomiec, Patrik Vestin, Joel D. White, Per Weslien, Julia Kelly, Natascha Kljun, Lena Ström, and Leif Klemedtsson
Biogeosciences, 19, 4331–4349, https://doi.org/10.5194/bg-19-4331-2022, https://doi.org/10.5194/bg-19-4331-2022, 2022
Short summary
Short summary
The study uses the stable isotope 13C of carbon in methane to investigate the origins of spatial and temporal variation in methane emitted by a temperate wetland ecosystem. The results indicate that methane production is more important for spatial variation than methane consumption by micro-organisms. Temporal variation on a seasonal timescale is most likely affected by more than one driver simultaneously.
Dóra Hidy, Zoltán Barcza, Roland Hollós, Laura Dobor, Tamás Ács, Dóra Zacháry, Tibor Filep, László Pásztor, Dóra Incze, Márton Dencső, Eszter Tóth, Katarína Merganičová, Peter Thornton, Steven Running, and Nándor Fodor
Geosci. Model Dev., 15, 2157–2181, https://doi.org/10.5194/gmd-15-2157-2022, https://doi.org/10.5194/gmd-15-2157-2022, 2022
Short summary
Short summary
Biogeochemical models used by the scientific community can support society in the quantification of the expected environmental impacts caused by global climate change. The Biome-BGCMuSo v6.2 biogeochemical model has been created by implementing a lot of developments related to soil hydrology as well as the soil carbon and nitrogen cycle and by integrating crop model components. Detailed descriptions of developments with case studies are presented in this paper.
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
László Haszpra and Ernő Prácser
Atmos. Meas. Tech., 14, 3561–3571, https://doi.org/10.5194/amt-14-3561-2021, https://doi.org/10.5194/amt-14-3561-2021, 2021
Short summary
Short summary
Most of the tall-tower greenhouse gas observatories apply a single gas analyzer for the sequential sampling of several intakes along the tower. The non-continuous sampling at each intake introduces excess uncertainty to the calculated hourly-average concentrations used in several applications. Based on real-world measurements, the paper systematically assesses this type of uncertainty.
Imre Salma, Wanda Thén, Pasi Aalto, Veli-Matti Kerminen, Anikó Kern, Zoltán Barcza, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 21, 2861–2880, https://doi.org/10.5194/acp-21-2861-2021, https://doi.org/10.5194/acp-21-2861-2021, 2021
Short summary
Short summary
The distribution of the monthly mean nucleation frequency possessed a characteristic pattern. Its shape was compared to those of environmental variables, including vegetation-derived properties. The spring maximum in the occurrence frequency often overlapped with the positive T anomaly. The link between the heat stress and the occurrence minimum in summer could not be proven, whereas an association between the occurrence frequency and vegetation growth dynamics was clearly identified in spring.
Paul C. Stoy, Adam A. Cook, John E. Dore, Natascha Kljun, William Kleindl, E. N. Jack Brookshire, and Tobias Gerken
Biogeosciences, 18, 961–975, https://doi.org/10.5194/bg-18-961-2021, https://doi.org/10.5194/bg-18-961-2021, 2021
Short summary
Short summary
The reintroduction of American bison creates multiple environmental benefits. Ruminants like bison also emit methane – a potent greenhouse gas – to the atmosphere, which has not been measured to date in a field setting. We measured methane efflux from an American bison herd during winter using eddy covariance. Automated cameras were used to approximate their location to calculate per-animal flux. From the measurements, bison do not emit more methane than the cattle they often replace.
Shamil Maksyutov, Tomohiro Oda, Makoto Saito, Rajesh Janardanan, Dmitry Belikov, Johannes W. Kaiser, Ruslan Zhuravlev, Alexander Ganshin, Vinu K. Valsala, Arlyn Andrews, Lukasz Chmura, Edward Dlugokencky, László Haszpra, Ray L. Langenfelds, Toshinobu Machida, Takakiyo Nakazawa, Michel Ramonet, Colm Sweeney, and Douglas Worthy
Atmos. Chem. Phys., 21, 1245–1266, https://doi.org/10.5194/acp-21-1245-2021, https://doi.org/10.5194/acp-21-1245-2021, 2021
Short summary
Short summary
In order to improve the top-down estimation of the anthropogenic greenhouse gas emissions, a high-resolution inverse modelling technique was developed for applications to global transport modelling of carbon dioxide and other greenhouse gases. A coupled Eulerian–Lagrangian transport model and its adjoint are combined with surface fluxes at 0.1° resolution to provide high-resolution forward simulation and inverse modelling of surface fluxes accounting for signals from emission hot spots.
Cited articles
Barcza, Z., Kern, A., Haszpra, L., and Kljun, N.: Spatial representativeness
of tall tower eddy covariance measurements using remote sensing and
footprint analysis, Agr. Forest Meteorol., 149, 795–807,
https://doi.org/10.1016/j.agrformet.2008.10.021, 2009.
Barcza, Z., Kern, A., Davis, K. J., and Haszpra, L.: Analysis of the 21-years long carbon dioxide flux dataset from a Central European tall tower site, Agr. Forest Meteorol., 290, 108027,
https://doi.org/10.1016/j.agrformet.2020.108027, 2020.
Benoit, M., Garnier, J., and Billen, G.: Temperature dependence of nitrous
oxide production of a luvisolic soil in batch experiments, Process
Biochem., 50, 79–85, https://doi.org/10.1016/j.procbio.2014.10.013,
2015.
Bruhn, D., Albert, K. R., Mikkelsen, T. N., and Ambus, P.: UV-induced carbon monoxide emission from living vegetation, Biogeosciences, 10, 7877–7882, https://doi.org/10.5194/bg-10-7877-2013, 2013.
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and
Zechmeister-Boltenstern, S.: Nitrous oxide emissions from soils: how well do
we understand the processes and their controls?, Philos. T. Roy. Soc. B, 368, 20130122, https://doi.org/10.1098/rstb.2013.0122, 2013.
Carbon Portal ICOS RI: STILT station characterization for Hegyhátsál
at 115 m, https://hdl.handle.net/11676/F6sSNmtF9qSne9P18HAlusf4, last access: 10 December 2021.
Chi, J., Nilsson, M. B., Kljun, N., Wallerman, J., Fransson, J. E. S.,
Laudon, H., Lundmark, T., and Peichl, M.: The carbon balance of a managed
boreal landscape measured from a tall tower in northern Sweden, Agr. Forest Meteorol., 274, 29–41, https://doi.org/10.1016/j.agrformet.2019.04.010, 2019.
Copernicus Climate Change Service: ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, Copernicus Climate Change
Service Climate Data Store (CDS),
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 10 June
2021), 2017.
Desai, A. R., Xu, K., Tian, H., Weishampel, P., Thom, J., Baumann, D.,
Andrews, A. E., Cook, B. D., King, J. Y., and Kolka, R.: Landscape-level
terrestrial methane flux observed from a very tall tower, Agr. Forest Meteorol., 201, 61–75, https://doi.org/10.1016/j.agrformet.2014.10.017, 2015.
European Environmental Agency: EMEP/EEA air pollutant emission inventory
guidebook 2019, EEA Report No. 13/2019, ISBN 978-92-9480-098-5, https://doi.org/10.2800/293657, 2019.
Fachinger, F., Drewnick, F., and Borrmann, S.: How villages contribute to
their local air quality – The influence of traffic- and biomass
combustion-related emissions assessed by mobile mappings of PM and its
components, Atmos. Environ., 263, 118648,
https://doi.org/10.1016/j.atmosenv.2021.118648, 2021.
Franz, D., Acosta, M., Altimir, N., Arriga, N., Arrouays, D., Aubinet, M.,
Aurela, M., Ayres, E., López-Ballesteros, A., Barbaste, M., Berveiller,
D., Biraud, S., Boukir, H., Brown, T., Brümmer, C., Buchmann, N., Burba,
G., Carrara, A., Cescatti, A., Ceschia, E., Clement, R., Cremonese, E.,
Crill, P., Darenova, E., Dengel, S., D'Odorico, P., Filippa, G., Fleck, S.,
Fratini, G., Fuß, R., Gielen, B., Gogo, S., Grace, J., Graf, A., Grelle,
A., Gross, P., Grünwald, T., Haapanala, S., Hehn, M., Heinesch, B.,
Heiskanen, J., Herbst, M., Herschlein, C., Hörtnagl, L., Hufkens, K.,
Ibrom, A., Jolivet, C., Joly, L., Jones, M., Kiese, R., Klemedtsson, L.,
Kljun, N., Klumpp, K., Kolari, P., Kolle, O., Kowalski, A., Kutsch, W.,
Laurila, T., de Ligne, A., Linder, S., Lindroth, A., Lohila, A., Longdoz,
B., Mammarella, I., Manise, T., Jiménez, S. M., Matteucci, G., Mauder,
M., Meier, P., Merbold, L., Mereu, S., Metzger, S., Migliavacca, M.,
Mölder, M., Montagnani, L., Moureaux, C., Nelson, D., Nemitz, E.,
Nicolini, G., Nilsson, M. B., de Beeck, M. O., Osborne, B., Löfvenius,
M. O., Pavelka, M., Peichl, M., Peltola, O., Pihlatie, M., Pitacco, A.,
Pokorný, R., Pumpanen, J., Ratié, C., Rebmann, C., Roland, M.,
Sabbatini, S., Saby, N. P. A., Saunders, M., Schmid, H. P., Schrumpf, M.,
Sedlák, P., Ortiz, P. S., Siebicke, L., Šigut, L., Silvennoinen, H.,
Simioni, G., Skiba, U., Sonnentag, O., Soudani, K., Soulé, P.,
Steinbrecher, R., Tallec, T., Thimonier, A., Tuittila, E.-S., Tuovinen,
J.-P., Vestin, P., Vincent, G., Vincke, C., Vitale, D., Waldner, P.,
Weslien, P., Wingate, L., Wohlfahrt, G., Zahniser, M., and Vesala, T.:
Towards long-term standardised carbon and greenhouse gas observations for
monitoring Europe's terrestrial ecosystems: a review, Int.
Agrophys., 32, 439–455, https://doi.org/10.1515/intag-2017-0039, 2018.
Gloor, M., Bakwin, P., Hurst, D., Lock, L., Draxler, R., and Tans, P.: What
is the concentration footprint of a tall tower?, J. Geophys. Res.,
106D, 17831–17840, https://doi.org/10.1029/2001JD900021, 2001.
Grimmond, C. S. B., King, T. S., Cropley, F. D., Nowak, D. J., and Souch,
C.: Local-scale fluxes of carbon dioxide in urban environments:
methodological challenges and results from Chicago, Environ. Pollut.,
116, S243–S254, https://doi.org/10.1016/s0269-7491(01)00256-1 2002.
Haszpra, L., Barcza, Z., Bakwin, P. S., Berger, B. W., Davis, K. J., and
Weidinger, T.: Measuring system for the long-term monitoring of
biosphere/atmosphere exchange of carbon dioxide, J. Geophys. Res.,
106D, 3057–3070, https://doi.org/10.1029/2000JD900600, 2001.
Haszpra, L., Barcza, Z., Davis, K. J., and Tarczay, K.: Long term tall tower
carbon dioxide flux monitoring over an area of mixed vegetation,
Agr. Forest Meteorol., 132, 58–77, https://doi.org/10.1016/j.agrformet.2005.07.002, 2005.
Haszpra, L., Hidy, D., Taligás, T., and Barcza, Z.: First results of
tall tower based nitrous oxide flux monitoring over an agricultural region
in Central Europe, Atmos. Environ., 176, 240–251,
https://doi.org/10.1016/j.atmosenv.2017.12.035, 2018.
Haszpra, L., Ferenczi, Z., and Barcza, Z.: Estimation of greenhouse gas
emission factors based on observed covariance of CO2, CH4,
N2O and CO mole fractions, Environmental Sciences Europe, 31, 95,
https://doi.org/10.1186/s12302-019-0277-y, 2019.
Heidbach, K., Schmid, H. P., and Mauder, M.: Experimental evaluation of flux
footprint models, Agr. Forest Meteorol., 246, 142–153,
https://doi.org/10.1016/j.agrformet.2017.06.008, 2017.
Hoffer, A., Jancsek-Turóczi, B., Tóth, Á., Kiss, G., Naghiu, A., Levei, E. A., Marmureanu, L., Machon, A., and Gelencsér, A.: Emission factors for PM10 and polycyclic aromatic hydrocarbons (PAHs) from illegal burning of different types of municipal waste in households, Atmos. Chem. Phys., 20, 16135–16144, https://doi.org/10.5194/acp-20-16135-2020, 2020.
Holtslag, A. A. M. and Nieuwstadt, F. T. M.: Scaling the atmospheric
boundary layer, Bound.-Lay. Meteorol., 36, 201–209,
https://doi.org/10.1007/bf00117468, 1986.
Hungarian Central Statistical Office: Gazetteer of Hungary, 1 January
2019, https://www.ksh.hu/docs/hun/hnk/hnk_2019.pdf (last access: 15 April 2020), 2019.
IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories –
Prepared by the National Greenhouse Gas Inventories Programme, edited by:
Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe, K., Institute for Global Environmental Strategies (IGES), Hayama, Japan, on behalf of the IPCC, ISBN 4-88788-032-4,
https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (last access: 26 August 2021), 2006.
IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A:
Global and Sectoral Aspects. Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, ISBN 978-1-107-05807-1, 2014.
IPCC: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse
Gas Inventories, edited by: Calvo, B. E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S., IPCC, Switzerland, ISBN 978-4-88788-232-4, 2019.
Kljun, N., Rotach, M. W., and Schmid, H. P.: A Three-Dimensional Backward
Lagrangian Footprint Model For A Wide Range Of Boundary-Layer
Stratifications, Bound.-Lay. Meteorol., 103, 205–226,
https://doi.org/10.1023/A:1014556300021, 2002.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A Simple
Parameterisation for Flux Footprint Predictions, Bound.-Lay. Meteorol.,
112, 503–523, https://doi.org/10.1023/B:BOUN.0000030653.71031.96, 2004a.
Kljun, N., Kastner-Klein, P., Fedorovich, E., and Rotach, M. W.: Evaluation
of Lagrangian footprint model using data from wind tunnel convective
boundary layer, Agr. Forest Meteorol., 127, 189–201,
https://doi.org/10.1016/j.agrformet.2004.07.013, 2004b.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015 (code available at: https://footprint.kljun.net/, last access: 8 October 2020).
Magyar Közút: Az országos közutak 2018, évre
vonatkozó keresztmetszeti forgalma, https://internet.kozut.hu/kozerdeku-adatok/orszagos-kozuti-adatbank/forgalomszamlalas/ (last access: 15 April 2020), 2019.
Moran, D., Kanemoto, K., Jiborn, M., Wood, R., Többen, J., and Seto, K.
C.: Carbon footprints of 13 000 cities, Environ. Res. Lett., 13,
064041, https://doi.org/10.1088/1748-9326/aac72a, 2018.
Oettl, D.: Evaluation of the Revised Lagrangian Particle Model GRAL against
wind-tunnel and field observations in the presence of obstacles,
Bound.-Lay. Meteorol., 155, 271–287, https://doi.org/10.1007/s10546-014-9993-4, 2015a.
Oettl, D.: Quality assurance of the prognostic, microscale wind-field model
GRAL 14.8 using wind-tunnel data provided by the German VDI guideline
3783-9, J. Wind Eng. Ind. Aerod., 142, 104–110, https://doi.org/10.1016/j.jweia.2015.03.014, 2015b.
Oettl, D., Sturm, P. J., Bacher, M., Pretterhofer, G., and Almbauer, R. A.:
A simple model for the dispersion of pollutants from a road tunnel portal,
Atmos. Environ., 36, 2943–2953, https://doi.org/10.1016/S1352-2310(02)00254-6, 2002.
Papale, D.: Ideas and perspectives: enhancing the impact of the FLUXNET network of eddy covariance sites, Biogeosciences, 17, 5587–5598, https://doi.org/10.5194/bg-17-5587-2020, 2020.
Rana, G., Martinelli, N., Famulari, D., Pezzati, F., Muschitiello, C., and
Ferrara, R. M.: Representativeness of carbon dioxide fluxes measured by eddy
covariance over a Mediterranean urban district with equipment setup
restrictions, Atmosphere, 12, 197, https://doi.org/10.3390/atmos12020197,
2021.
Romanov, A. A., Gusev, B. A., Leonenko, E. V., Tamarovskaya, A. N.,
Vasiliev, A. S., Zaytcev, N. E., and Philippov, I. K.: Graz Lagrangian Model
(GRAL) for pollutants tracking and estimating sources partial contributions
to atmospheric pollution in highly urbanized areas, Atmosphere, 11, 1375,
https://doi.org/10.3390/atmos11121375, 2020.
Satar, E., Berhanu, T. A., Brunner, D., Henne, S., and Leuenberger, M.: Continuous CO2 CH4 CO measurements (2012–2014) at Beromünster tall tower station in Switzerland, Biogeosciences, 13, 2623–2635, https://doi.org/10.5194/bg-13-2623-2016, 2016.
Schmid, H. P.: Source areas for scalars and scalar fluxes, Bound.-Lay. Meteorol., 67, 293–318, 1994.
Stagakis, S., Chrysoulakis, N., Spyridakis, N., Feigenwinter, C., and Vogt,
R.: Eddy Covariance measurements and source partitioning of CO2 emissions in an urban environment: Application for Heraklion, Greece, Atmos.
Environ., 201, 278–292, https://doi.org/10.1016/j.atmosenv.2019.01.009,
2019.
Tanács, E., Belényesi, M., Lehoczki, R., Pataki, R., Petrik, O.,
Standovár, T., Pásztor, L., Laborczi, A., Szatmári, G.,
Molnár, Z., Bede-Fazekas, Á., Kisné Fodor, L., Varga, I.,
Zsembery, Z., and Maucha, G.: Országos, nagyfelbontású
ökoszisztéma-alaptérkép: módszertan, validáció
és felhasználási lehetőségek (A national,
high-resolution ecosystem basemap: methodology, validation, and possible
uses), Természetvédelmi Közlemények, 25, 34–58,
https://doi.org/10.20332/tvk-jnatconserv.2019.25.34, 2019.
Technische Universität Graz: GRAL – Graz Lagrangian Model, Technische Universität Graz [code], https://gral.tugraz.at/index.php/download, last access: 1 November 2021.
Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W.,
Suntharalingam, P., Davidson, E. A., Ciais, P., Jackson, R. B.,
Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S.,
Peters, G. P., Shi, H., Tubiello, F. N., Zaehle, S., Zhou, F., Arneth, A.,
Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T.,
Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins,
J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A., Joos, F., Krummel, P. B.,
Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara,
T., MacLeod, M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G.,
Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N., Wang, J.,
Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A
comprehensive quantification of global nitrous oxide sources and sinks,
Nature, 586, 248–256, https://doi.org/10.1038/s41586-020-2780-0, 2020.
van der Kwast, J., Timmermans, W., Gieske, A., Su, Z., Olioso, A., Jia, L., Elbers, J., Karssenberg, D., and de Jong, S.: Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain), Hydrol. Earth Syst. Sci., 13, 1337–1347, https://doi.org/10.5194/hess-13-1337-2009, 2009.
Vesala, T., Kljun, N., Rannik, Ü., Rinne, J., Sogachev, A., Markkanen,
T., Sabelfeld, K., Foken, T., and Leclerc, M. Y.: Flux and concentration
footprint modelling: State of the art, Environ. Pollut., 152,
653–666, https://doi.org/10.1016/j.envpol.2007.06.070, 2008.
Vogt, R., Christen, A., Rotach, M. W., Roth, M., and Satyanarayana, A. N.
V.: Temporal dynamics of CO2 fluxes and profiles over a Central
European city, Theor. Appl. Climatol., 84, 117–126,
https://doi.org/10.1007/s00704-005-0149-9, 2006.
WMO: 20th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2019), Jeju Island, South Korea, 2–5 September 2019, edited by: Crotwell, A., Lee, H., and Steinbacher, M., GAW Report No. 255, https://library.wmo.int/doc_num.php?explnum_id=10353 (last access: 29 August 2022), 2020.
Zheng, B., Chevallier, F., Yin, Y., Ciais, P., Fortems-Cheiney, A., Deeter, M. N., Parker, R. J., Wang, Y., Worden, H. M., and Zhao, Y.: Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions, Earth Syst. Sci. Data, 11, 1411–1436, https://doi.org/10.5194/essd-11-1411-2019, 2019.
Short summary
A novel approach is used for the determination of greenhouse gas (GHG) emissions of small rural settlements, which may significantly differ from those of urban regions and have hardly been studied yet. Among other results, it turned out that wintertime nitrous oxide emission is significantly underestimated in the official emission inventories. Given the large number of such settlements, the underestimation may also distort the national total emission values reported to international databases.
A novel approach is used for the determination of greenhouse gas (GHG) emissions of small rural...