Articles | Volume 15, issue 19
https://doi.org/10.5194/amt-15-5821-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-5821-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland
Matthias Aichinger-Rosenberger
CORRESPONDING AUTHOR
Institute of Geodesy and Photogrammetry, ETH Zürich, 8093 Zurich, Switzerland
Elmar Brockmann
Swiss Federal Office of Topography (swisstopo), 3084 Wabern bei Bern, Switzerland
Laura Crocetti
Institute of Geodesy and Photogrammetry, ETH Zürich, 8093 Zurich, Switzerland
Benedikt Soja
Institute of Geodesy and Photogrammetry, ETH Zürich, 8093 Zurich, Switzerland
Gregor Moeller
Institute of Geodesy and Photogrammetry, ETH Zürich, 8093 Zurich, Switzerland
Related authors
Matthias Aichinger-Rosenberger and Jeremiah Sjoberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-2767, https://doi.org/10.5194/egusphere-2025-2767, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper presents a data-driven framework for retrieving atmospheric profiles from Global Navigation Satellite Systems (GNSS) radio occultation (RO). The benefit compared to standard products is its independence of external information. Profiles are validated using reanalysis and radiosonde data, with results showing accuracy comparable to standard methods. This represents a promising investigation on the applicability of such models in RO, which could advance the quality of RO products.
Matthias Aichinger-Rosenberger and Jeremiah Sjoberg
EGUsphere, https://doi.org/10.5194/egusphere-2025-2767, https://doi.org/10.5194/egusphere-2025-2767, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper presents a data-driven framework for retrieving atmospheric profiles from Global Navigation Satellite Systems (GNSS) radio occultation (RO). The benefit compared to standard products is its independence of external information. Profiles are validated using reanalysis and radiosonde data, with results showing accuracy comparable to standard methods. This represents a promising investigation on the applicability of such models in RO, which could advance the quality of RO products.
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025, https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Short summary
This work investigates whether machine learning (ML) can offer an alternative to existing methods to map radio occultation (RO) products, allowing the extraction of information not visible in direct observations. ML can further improve the results of Bayesian interpolation, a state-of-the-art method to map RO observations. The results display improvements in horizontal and temporal domains, at heights ranging from the planetary boundary layer up to the lower stratosphere, and for all seasons.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021, https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Short summary
Climate hazards may be caused by events which have multiple drivers. Here we present a method to break down climate model biases in hazard indicators down to the bias caused by each driving variable. Using simplified fire and heat stress indicators driven by temperature and relative humidity as examples, we show how multivariate indicators may have complex biases and that the relationship between driving variables is a source of bias that must be considered in climate model bias corrections.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Cited articles
Aichinger-Rosenberger, M.: Usability of high-resolution GNSS-ZTD data in the
AROME model, Master's thesis, University of Innsbruck,
https://diglib.uibk.ac.at/urn:nbn:at:at-ubi:1-27392 (last access: 2 September 2022), 2018. a
Baeza-Yates, R. A. and Ribeiro-Neto, B.: Modern Information Retrieval,
Addison-Wesley Longman Publishing Co., Inc., USA, https://doi.org/10.5555/553876, 327–328, 1999. a
Barnes, L. R., Gruntfest, E. C., Hayden, M. H., Schultz, D. M., and Benight,
C.: False Alarms and Close Calls: A Conceptual Model of Warning Accuracy,
Weather Forecast., 22, 1140–1147, https://doi.org/10.1175/WAF1031.1, 2007. a
Bennitt, G. V. and Jupp, A.: Operational Assimilation of GPS Zenith Total
Delay Observations into the Met Office Numerical Weather Prediction Models,
Mon. Weather Rev., 140, 2706–2719, https://doi.org/10.1175/MWR-D-11-00156.1,
2012. a
Bevis, M., Businger, S., Herring, T. A., Anthes, R. A., and Ware, R. H.: GPS
Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global
Positioning System, Geophys. Mag., 34, 359–425, 1992. a
Breiman, L.: Random Forests, Machine Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001. a
Brenot, H., Neméghaire, J., Delobbe, L., Clerbaux, N., De Meutter, P., Deckmyn, A., Delcloo, A., Frappez, L., and Van Roozendael, M.: Preliminary signs of the initiation of deep convection by GNSS, Atmos. Chem. Phys., 13, 5425–5449, https://doi.org/10.5194/acp-13-5425-2013, 2013. a
Brockmann, E.: Reprocessed GNSS tropospheric products at swisstopo, in:
GNSS4SWEC workshop, Thessaloniki, 11–14 May, 2015. a
Brockmann, E.: National Report of Switzerland, in: EUREF-Symposium, San
Sebastian, Spain, 25–27 May, 2016. a
Brockmann, E., Grünig, S., Schneider, D., Wiget, A., and Wild, U.: National
report of Switzerland: Introduction and first applications of a Real-Time
Precise Positioning Service using the Swiss Permanent Network AGNES, in:
Torres, J. A. and Hornik, H., Subcommission for the European Reference
Frame (EUREF), EUREF Publication No. 10, Mitteilungen des Bundesamtes für
Kartographie und Geodäsie, 23, 272–276, 2002. a
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P.: SMOTE:
Synthetic Minority Over-sampling Technique, J. Art.
Intellig. Res., 16, 321–357, https://doi.org/10.1613/jair.953, 2002. a
Cover, T. and Hart, P.: Nearest neighbor pattern classification, IEEE
Trans. Inform. Theor., 13, 21–27,
https://doi.org/10.1109/TIT.1967.1053964, 1967. a
de Haan, S.: Meteorological applications of a surface network of Global
Positioning System receivers, Ph.D. thesis, Wageningen University, available at: https://library.wur.nl/WebQuery/wurpubs/366332 (last access: 12 October 2022), 2008. a
de Haan, S.: Assimilation of GNSS ZTD and radar radial velocity for the
benefit of very-short-range regional weather forecasts, Q. J. Roy. Meteorol.
Soc., 139, 2097–2107, 2013. a
Deloncle, A., Berk, R., D'Andrea, F., and Ghil, M.: Weather Regime Prediction
Using Statistical Learning, J. Atmos.
Sci., 64, 1619–1635, https://doi.org/10.1175/JAS3918.1, 2007. a, b
Drobinski, P., Steinacker, R., Richner, H., Baumann-stanzer, K., Beffrey, G.,
Bénech, B., Berger, H., Chimani, B., Dabas, A., Dorninger, M., Dürr,
B., Flamant, C., Frioud, M., Furger, M., Gröhn, I., Gubser, S.,
Gutermann, T., Häberli, C., Häller-Scharnhost, E., Jaubert, G.,
Lothon, M., Mitev, V., Pechinger, U., Piringer, M., Ratheiser, M., Ruffieux,
D., Seiz, G., Spatzierer, M., Tschannett, S., Vogt, S., Werner, R., and
Zängl, G.: Föhn in the Rhine Valley during MAP: A review of its
multiscale dynamics in complex valley geometry, Q. J.
Roy. Meteorol. Soc., 133, 897–916, 2007. a
Freund, Y. and Schapire, R. E.: A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting, J. Comput. Syst.
Sci., 55, 119–139, https://doi.org/10.1006/jcss.1997.1504, 1997. a
Glahn, H. R. and Lowry, D. A.: The Use of Model Output Statistics (MOS) in
Objective Weather Forecasting, J. Appl. Meteorol.
Climatol., 11, 1203–1211,
https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2, 1972. a
Gohm, A. and Mayr, G. J.: Hydraulic aspects of föhn winds in an Alpine valley,
Q. J. Roy. Meteorol. Soc., 130, 449–480,
https://doi.org/10.1256/qj.03.28, 2004. a
Guerova, G., Jones, J., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Pacione, R., Elgered, G., Vedel, H., and Bender, M.: Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe, Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016, 2016. a
Gutermann, T., Dürr, B., Richner, H., and Bader, S.: Föhnklimatologie
Altdorf: die lange Reihe (1864–2008) und ihre Weiterführung, Vergleich mit
anderen Stationen, https://doi.org/10.3929/ethz-a-007583529, 2012. a, b
Hess, R.: Statistical postprocessing of ensemble forecasts for severe weather at Deutscher Wetterdienst, Nonlin. Processes Geophys., 27, 473–487, https://doi.org/10.5194/npg-27-473-2020, 2020. a
Hsieh, W. W.: Machine Learning Methods in the Environmental Sciences: Neural
Networks and Kernels, Cambridge University Press,
https://doi.org/10.1017/CBO9780511627217, 349 pp., 2009. a
Kretzschmar, R., Eckert, P., Cattani, D., and Eggimann, F.: Neural Network
Classifiers for Local Wind Prediction, J. Appl. Meteorol., 43, 727–738, https://doi.org/10.1175/2057.1, 2004. a, b
LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.: Efficient
backprop, in: Neural networks: Tricks of the trade, 9–48, Springer,
https://doi.org/10.1007/978-3-642-35289-8_3, 2012. a
Lothon, M., Druilhet, A., Bénech, B., Campistron, B., Bernard, S., and Said,
F.: Experimental study of five föhn events during the Mesoscale Alpine
Programme: From synoptic scale to turbulence, Q. J. Roy.
Meteorol. Soc., 129, 2171–2193, https://doi.org/10.1256/qj.02.30, 2006. a
Manzato, A.: The Use of Sounding-Derived Indices for a Neural Network
Short-Term Thunderstorm Forecast, Weather Forecast., 20, 896–917,
https://doi.org/10.1175/WAF898.1, 2005. a, b
Mayr, G., Plavcan, D., Armi, L., Elvidge, A., Grisogono, B., Horvath, K.,
Jackson, P., Neururer, A., Seibert, P., Steenburgh, J. W., Stiperski, I.,
Sturman, A., Željko Večenaj, Vergeiner, J., Vosper, S., and Zängl, G.: The
Community Foehn Classification Experiment, B. Am.
Meteorol. Soc., 99, 2229–2235, https://doi.org/10.1175/BAMS-D-17-0200.1,
2018. a, b
Mayr, G. J., Armi, L., Gohm, A., Zängl, G., Durran, D. R., Flamant, C.,
Gabersek, S., Mobbs, S. D., Ross, A. B., and Weissmann, M.: Gap flows:
Results from the Mesoscale Alpine Programme, Q. J. Roy.
Meteorol. Soc., 133, 881–896, 2007. a
Mony, C., Jansing, L., and Sprenger, M.: Evaluating Foehn Occurrence in a
Changing Climate Based on Reanalysis and Climate Model Data Using Machine
Learning, Weather Forecast., 36, 2039–2055,
https://doi.org/10.1175/WAF-D-21-0036.1, 2021. a
Otero, F. and Araneo, D.: Zonda wind classification using machine learning
algorithms, Int. J. Climatol., 41, E342–E353,
https://doi.org/10.1002/joc.6688, 2021. a, b
Pacione, R., Araszkiewicz, A., Brockmann, E., and Dousa, J.: EPN-Repro2: A reference GNSS tropospheric data set over Europe, Atmos. Meas. Tech., 10, 1689–1705, https://doi.org/10.5194/amt-10-1689-2017, 2017. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Machine Learn.
Res. [code], 12, 2825–2830, 2011. a
Perler, D. and Marchand, O.: A Study in Weather Model Output Postprocessing:
Using the Boosting Method for Thunderstorm Detection, Weather
Forecast., 24, 211–222, https://doi.org/10.1175/2008WAF2007047.1, 2009. a, b
Plavcan, D., Mayr, G. J., and Zeileis, A.: Automatic and Probabilistic Foehn
Diagnosis with a Statistical Mixture Model, J. Appl. Meteorol.
Climatol., 53, 652–659, https://doi.org/10.1175/JAMC-D-13-0267.1, 2014. a
Rüeger, J. M.: Refractive index formulae for radio waves, in: Proc. XXII FIG International Congress, Washington DC, USA, FIG, http://www.fig.net/pub/fig_2002/procmain.htm (last access: 24 January 2022), 2002a. a
Saastamoinen, J.: Contributions to the theory of atmospheric refraction, Bull.
Geodes. 105, 13–34, 1972. a
Scher, S. and Messori, G.: Predicting weather forecast uncertainty with machine
learning, Q. J. Roy. Meteorol. Soc., 144,
2830–2841, https://doi.org/10.1002/qj.3410, 2018. a
Solheim, F. S., Vivekanandan, J., Ware, R. H., and Rocken, C.: Propagation
delays induced in GPS signals by dry air, water vapor, hydrometeors, and
other particulates, J. Geophys. Res.-Atmos., 104,
9663–9670, https://doi.org/10.1029/1999JD900095, 1999. a
Steinacker, R.: Alpiner Foehn – a new verse to an old song, Promet, 32, 3–10, 2006. a
Stoev, K. and Guerova, G.: Use of GNSS tropospheric products to study the
foehn in Sofia, Talk: EMS Annual Meeting: European Conference for Applied
Meteorology and Climatology 2018, 3–7 September 2018, Budapest, Hungary,
2018. a
Stoycheva, A. and Guerova, G.: Study of fog in Bulgaria by using the GNSS
tropospheric products and large scale dynamic analysis, J.
Atmos. Solar-Terrest. Phys., 133, 87–97,
https://doi.org/10.1016/j.jastp.2015.08.004, 2015. a
Wilhelm, M.: COSMO-2 Model Performance in Forecasting Foehn: a Systematic
Process-oriented Verification, Veröffentlichungen der MeteoSchweiz, 89,
64 pp., https://www.meteoschweiz.admin.ch/home/service-und-publikationen/publikationen.subpage.html/de/data/publications/2012/8/cosmo-2-model-performance-in-forecasting-foehn--a-systematic-pro.html (last access: 12 October 2022), 2012. a
Wilks, D. S. and Hamill, T. M.: Comparison of Ensemble-MOS Methods Using GFS
Reforecasts, Mon. Weather Rev., 135, 2379–2390,
https://doi.org/10.1175/MWR3402.1, 2007. a
WMO: International Meteorological Vocabulary, WMO No. 182, https://library.wmo.int/?lvl=notice_display&id=220#.Y0Z1zEzP23A (last access: 12 October 2022), 1992. a
Yalavarthi, R. and Shashi, M.: Atmospheric Temperature Prediction using Support
Vector Machines, Int. J. Comput. Theor. Eng., 1,
55–58, https://doi.org/10.7763/IJCTE.2009.V1.9, 2009. a, b
Yan, X., Ducrocq, V., Jaubert, G., Brousseau, P., Poli, P., Champollion, C.,
Flamant, C., and Boniface, K.: The benefit of GPS zenith delay assimilation
to high-resolution quantitative precipitation forecast. A case-study from
COPS IOP 9, Q. J. Roy. Meteorol. Soc., 135, 1788–1800, 2009. a
Short summary
This study develops an innovative approach for the detection and prediction of foehn winds. The approach uses products generated from GNSS (Global Navigation Satellite Systems) in combination with machine learning-based classification algorithms to detect and predict foehn winds at Altdorf, Switzerland. Results are encouraging and comparable to similar studies using meteorological data, which might qualify the method as an additional tool for short-term foehn forecasting in the future.
This study develops an innovative approach for the detection and prediction of foehn winds. The...