Articles | Volume 15, issue 19
https://doi.org/10.5194/amt-15-5821-2022
https://doi.org/10.5194/amt-15-5821-2022
Research article
 | 
14 Oct 2022
Research article |  | 14 Oct 2022

Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland

Matthias Aichinger-Rosenberger, Elmar Brockmann, Laura Crocetti, Benedikt Soja, and Gregor Moeller

Related authors

Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024,https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
GNSS Radio Occultation Climatologies mapped by Machine Learning and Bayesian Interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-205,https://doi.org/10.5194/amt-2023-205, 2023
Revised manuscript accepted for AMT
Short summary
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022,https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Towards a compound-event-oriented climate model evaluation: a decomposition of the underlying biases in multivariate fire and heat stress hazards
Roberto Villalobos-Herrera, Emanuele Bevacqua, Andreia F. S. Ribeiro, Graeme Auld, Laura Crocetti, Bilyana Mircheva, Minh Ha, Jakob Zscheischler, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 21, 1867–1885, https://doi.org/10.5194/nhess-21-1867-2021,https://doi.org/10.5194/nhess-21-1867-2021, 2021
Short summary
Trends of atmospheric water vapour in Switzerland from ground-based radiometry, FTIR and GNSS data
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020,https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024,https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee​​​​​​​ Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024,https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024,https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024,https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary

Cited articles

Aichinger-Rosenberger, M.: Usability of high-resolution GNSS-ZTD data in the AROME model, Master's thesis, University of Innsbruck, https://diglib.uibk.ac.at/urn:nbn:at:at-ubi:1-27392 (last access: 2 September 2022), 2018. a
Baeza-Yates, R. A. and Ribeiro-Neto, B.: Modern Information Retrieval, Addison-Wesley Longman Publishing Co., Inc., USA, https://doi.org/10.5555/553876, 327–328, 1999. a
Barnes, L. R., Gruntfest, E. C., Hayden, M. H., Schultz, D. M., and Benight, C.: False Alarms and Close Calls: A Conceptual Model of Warning Accuracy, Weather Forecast., 22, 1140–1147, https://doi.org/10.1175/WAF1031.1, 2007. a
Bennitt, G. V. and Jupp, A.: Operational Assimilation of GPS Zenith Total Delay Observations into the Met Office Numerical Weather Prediction Models, Mon. Weather Rev., 140, 2706–2719, https://doi.org/10.1175/MWR-D-11-00156.1, 2012. a
Bevis, M., Businger, S., Herring, T. A., Anthes, R. A., and Ware, R. H.: GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System, Geophys. Mag., 34, 359–425, 1992. a
Download
Short summary
This study develops an innovative approach for the detection and prediction of foehn winds. The approach uses products generated from GNSS (Global Navigation Satellite Systems) in combination with machine learning-based classification algorithms to detect and predict foehn winds at Altdorf, Switzerland. Results are encouraging and comparable to similar studies using meteorological data, which might qualify the method as an additional tool for short-term foehn forecasting in the future.