Articles | Volume 15, issue 4
https://doi.org/10.5194/amt-15-879-2022
https://doi.org/10.5194/amt-15-879-2022
Research article
 | 
21 Feb 2022
Research article |  | 21 Feb 2022

Cloud-probability-based estimation of black-sky surface albedo from AVHRR data

Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson

Related authors

Effect of small-scale snow surface roughness on snow albedo and reflectance
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021,https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Monitoring changes in forestry and seasonal snow using surface albedo during 1982–2016 as an indicator
Terhikki Manninen, Tuula Aalto, Tiina Markkanen, Mikko Peltoniemi, Kristin Böttcher, Sari Metsämäki, Kati Anttila, Pentti Pirinen, Antti Leppänen, and Ali Nadir Arslan
Biogeosciences, 16, 223–240, https://doi.org/10.5194/bg-16-223-2019,https://doi.org/10.5194/bg-16-223-2019, 2019
Short summary
An Aerosol Optical Depth time series 1982–2014 for atmospheric correction based on OMI and TOMS Aerosol Index
Emmihenna Jääskeläinen, Terhikki Manninen, Johanna Tamminen, and Marko Laine
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-180,https://doi.org/10.5194/amt-2016-180, 2016
Revised manuscript not accepted
Brief communication: Light-absorbing impurities can reduce the density of melting snow
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014,https://doi.org/10.5194/tc-8-991-2014, 2014
CLARA-SAL: a global 28 yr timeseries of Earth's black-sky surface albedo
A. Riihelä, T. Manninen, V. Laine, K. Andersson, and F. Kaspar
Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013,https://doi.org/10.5194/acp-13-3743-2013, 2013

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Long-term multi-source precipitation estimation with high resolution (RainGRS Clim)
Anna Jurczyk, Katarzyna Ośródka, Jan Szturc, Magdalena Pasierb, and Agnieszka Kurcz
Atmos. Meas. Tech., 16, 4067–4079, https://doi.org/10.5194/amt-16-4067-2023,https://doi.org/10.5194/amt-16-4067-2023, 2023
Short summary
Retrieval of snow layer and melt pond properties on Arctic sea ice from airborne imaging spectrometer observations
Sophie Rosenburg, Charlotte Lange, Evelyn Jäkel, Michael Schäfer, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 16, 3915–3930, https://doi.org/10.5194/amt-16-3915-2023,https://doi.org/10.5194/amt-16-3915-2023, 2023
Short summary
Using optimal estimation to retrieve winds from velocity-azimuth display (VAD) scans by a Doppler lidar
Sunil Baidar, Timothy J. Wagner, David D. Turner, and W. Alan Brewer
Atmos. Meas. Tech., 16, 3715–3726, https://doi.org/10.5194/amt-16-3715-2023,https://doi.org/10.5194/amt-16-3715-2023, 2023
Short summary
Angular sampling of a monochromatic, wide-field-of-view camera to augment next-generation Earth radiation budget satellite observations
Jake J. Gristey, K. Sebastian Schmidt, Hong Chen, Daniel R. Feldman, Bruce C. Kindel, Joshua Mauss, Mathew van den Heever, Maria Z. Hakuba, and Peter Pilewskie
Atmos. Meas. Tech., 16, 3609–3630, https://doi.org/10.5194/amt-16-3609-2023,https://doi.org/10.5194/amt-16-3609-2023, 2023
Short summary
Higher-Order Calibration on WindRAD scatterometer winds
Zhen Li, Ad Stoffelen, and Anton Verhoef
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-112,https://doi.org/10.5194/amt-2023-112, 2023
Revised manuscript accepted for AMT
Short summary

Cited articles

Anttila, K., Manninen, T., Jääskeläinen, E., Riihelä, A., and Lahtinen, P.: The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40 N–80 N during 1982–2015, Remote Sens., 10, 1619, https://doi.org/10.3390/rs10101619, 2018. 
Augustine, J.: Basic measurements of radiation at station Desert Rock (2008-11), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.719888, 2009a. 
Augustine, J.: Basic measurements of radiation at station Desert Rock (2009-04), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.719908, 2009b. 
Augustine, J.: Basic measurements of radiation at station Fort Peck (2008-11), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.721298, 2009c. 
Augustine, J.: Basic measurements of radiation at station Fort Peck (2009-04), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.721314, 2009d. 
Download
Short summary
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data. Instead of a binary cloud mask, it applies cloud probability values smaller than 20% of the A3 edition of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record provided by the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT. According to simulations, the 90% quantile was 1.1% for the absolute albedo error and 2.2% for the relative error.