Articles | Volume 15, issue 4
https://doi.org/10.5194/amt-15-879-2022
https://doi.org/10.5194/amt-15-879-2022
Research article
 | 
21 Feb 2022
Research article |  | 21 Feb 2022

Cloud-probability-based estimation of black-sky surface albedo from AVHRR data

Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson

Related authors

Effect of small-scale snow surface roughness on snow albedo and reflectance
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021,https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Monitoring changes in forestry and seasonal snow using surface albedo during 1982–2016 as an indicator
Terhikki Manninen, Tuula Aalto, Tiina Markkanen, Mikko Peltoniemi, Kristin Böttcher, Sari Metsämäki, Kati Anttila, Pentti Pirinen, Antti Leppänen, and Ali Nadir Arslan
Biogeosciences, 16, 223–240, https://doi.org/10.5194/bg-16-223-2019,https://doi.org/10.5194/bg-16-223-2019, 2019
Short summary
An Aerosol Optical Depth time series 1982–2014 for atmospheric correction based on OMI and TOMS Aerosol Index
Emmihenna Jääskeläinen, Terhikki Manninen, Johanna Tamminen, and Marko Laine
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-180,https://doi.org/10.5194/amt-2016-180, 2016
Revised manuscript not accepted
Brief communication: Light-absorbing impurities can reduce the density of melting snow
O. Meinander, A. Kontu, A. Virkkula, A. Arola, L. Backman, P. Dagsson-Waldhauserová, O. Järvinen, T. Manninen, J. Svensson, G. de Leeuw, and M. Leppäranta
The Cryosphere, 8, 991–995, https://doi.org/10.5194/tc-8-991-2014,https://doi.org/10.5194/tc-8-991-2014, 2014
CLARA-SAL: a global 28 yr timeseries of Earth's black-sky surface albedo
A. Riihelä, T. Manninen, V. Laine, K. Andersson, and F. Kaspar
Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013,https://doi.org/10.5194/acp-13-3743-2013, 2013

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
GNSS-RO residual ionospheric error (RIE): a new method and assessment
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025,https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech., 18, 793–816, https://doi.org/10.5194/amt-18-793-2025,https://doi.org/10.5194/amt-18-793-2025, 2025
Short summary
Comparative experimental validation of microwave hyperspectral atmospheric soundings in clear-sky conditions
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 18, 471–485, https://doi.org/10.5194/amt-18-471-2025,https://doi.org/10.5194/amt-18-471-2025, 2025
Short summary
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025,https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Determination of low-level temperature profiles from microwave radiometer observations during rain
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024,https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary

Cited articles

Anttila, K., Manninen, T., Jääskeläinen, E., Riihelä, A., and Lahtinen, P.: The Role of Climate and Land Use in the Changes in Surface Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in Northern Land Areas of 40 N–80 N during 1982–2015, Remote Sens., 10, 1619, https://doi.org/10.3390/rs10101619, 2018. 
Augustine, J.: Basic measurements of radiation at station Desert Rock (2008-11), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.719888, 2009a. 
Augustine, J.: Basic measurements of radiation at station Desert Rock (2009-04), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.719908, 2009b. 
Augustine, J.: Basic measurements of radiation at station Fort Peck (2008-11), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.721298, 2009c. 
Augustine, J.: Basic measurements of radiation at station Fort Peck (2009-04), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.721314, 2009d. 
Download
Short summary
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data. Instead of a binary cloud mask, it applies cloud probability values smaller than 20% of the A3 edition of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record provided by the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT. According to simulations, the 90% quantile was 1.1% for the absolute albedo error and 2.2% for the relative error.
Share