Articles | Volume 15, issue 4
https://doi.org/10.5194/amt-15-879-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-879-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cloud-probability-based estimation of black-sky surface albedo from AVHRR data
Terhikki Manninen
CORRESPONDING AUTHOR
Meteorological Research, Finnish Meteorological Institute, Helsinki, 00101, Finland
Emmihenna Jääskeläinen
Meteorological Research, Finnish Meteorological Institute, Helsinki, 00101, Finland
Niilo Siljamo
Meteorological Research, Finnish Meteorological Institute, Helsinki, 00101, Finland
Aku Riihelä
Meteorological Research, Finnish Meteorological Institute, Helsinki, 00101, Finland
Karl-Göran Karlsson
Atmospheric Remote Sensing Unit, Research Department, Swedish
Meteorological and Hydrological Institute, Norrköping, 60176
Norrköping, Sweden
Related authors
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Karl-Göran Karlsson, Nina Håkansson, Salomon Eliasson, Erwin Wolters, and Ronald Scheirer
Atmos. Meas. Tech., 18, 3833–3855, https://doi.org/10.5194/amt-18-3833-2025, https://doi.org/10.5194/amt-18-3833-2025, 2025
Short summary
Short summary
The topic is finding methods to extend climate data records from single-instrument satellite observations, in this case the Advanced Very High Resolution Radiometer (AVHRR). Several modern instruments include AVHRR-heritage channels, but some corrections are necessary to account for some differences. We have simulated AVHRR data from the Visible Infrared Imaging Radiometer Suite (VIIIRS) sensor on National Oceanic and Atmospheric Administration (NOAA) polar satellites. We find that methods based on machine learning are capable of performing these corrections.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025, https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary
Short summary
By compositing trends in multiple climate variables, this study presents emerging regimes that are relevant for solar energy applications. It is shown that the favourable conditions for exploiting solar energy are emerging during spring and early summer. The study also underscores the increasingly important role of clouds in regulating surface solar radiation as the aerosol concentrations are decreasing over Europe and the societal value of satellite-based climate monitoring.
Leena Leppänen, Antero Kukko, Aleksi Rimali, Aku Riihelä, and Priit Tisler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2059, https://doi.org/10.5194/egusphere-2025-2059, 2025
Short summary
Short summary
We present field measurements collected during the FINNARP 2022 expedition at the Aboa station, located in Dronning Maud Land, Antarctica. Field observations were carried out weekly at the automatic weather station site as well as at selected overpass locations of two satellites. The measurements included continuous meteorological observations from the weather station, detailed snow pit profiles, ground-based and drone-based radiation measurements, and snow surface roughness with laser scanners.
Emmihenna Jääskeläinen, Miska Luoto, Pauli Putkiranta, Mika Aurela, and Tarmo Virtanen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-390, https://doi.org/10.5194/hess-2024-390, 2025
Revised manuscript under review for HESS
Short summary
Short summary
The challenge with current satellite-based soil moisture products is their coarse resolution. Therefore, we used machine-learning model to improve spatial resolution of well-known SMAP soil moisture data, by using in situ soil moisture observations and additional soil and vegetation properties. Comparisons against independent data set show that the model estimated soil moisture values have better agreement with in situ observations compared to other SMAP-related soil moisture data.
Emmihenna Jääskeläinen, Kerttu Kouki, and Aku Riihelä
Hydrol. Earth Syst. Sci., 28, 3855–3870, https://doi.org/10.5194/hess-28-3855-2024, https://doi.org/10.5194/hess-28-3855-2024, 2024
Short summary
Short summary
Snow cover is an important variable when studying the effect of climate change in the Arctic. Therefore, the correct detection of snowfall is important. In this study, we present methods to detect snowfall accurately using satellite observations. The snowfall event detection results of our limited area are encouraging. We find that further development could enable application over the whole Arctic, providing necessary information on precipitation occurrence over remote areas.
Adriano Lemos and Aku Riihelä
EGUsphere, https://doi.org/10.5194/egusphere-2024-869, https://doi.org/10.5194/egusphere-2024-869, 2024
Short summary
Short summary
Here we used satellite imagery to measure snow depth in northern Finland and compared to on-site weather stations from 2019–2022. We correlated snow depths and vegetation coverage, and found thicker snow over non-vegetated areas and frozen water bodies due to the satellite's sensitivity. Our estimates showed underestimated results of snow depth and need further investigation, but they highlight the potential in monitoring seasonal snow changes, particularly where direct measurements are lacking.
Aku Riihelä, Emmihenna Jääskeläinen, and Viivi Kallio-Myers
Earth Syst. Sci. Data, 16, 1007–1028, https://doi.org/10.5194/essd-16-1007-2024, https://doi.org/10.5194/essd-16-1007-2024, 2024
Short summary
Short summary
We describe a new climate data record describing the surface albedo, or reflectivitity, of Earth's surface (called CLARA-A3 SAL). The climate data record spans over 4 decades of satellite observations, beginning in 1979. We conduct a quality assessment of the generated data, comparing them against other satellite data and albedo observations made on the ground. We find that the new data record in general matches surface observations well and is stable through time.
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023, https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE, and albedo are mostly negative in 1982–2018, and the negative trends become more apparent when spring advances.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Cited articles
Anttila, K., Manninen, T., Jääskeläinen, E., Riihelä, A., and
Lahtinen, P.: The Role of Climate and Land Use in the Changes in Surface
Albedo Prior to Snow Melt and the Timing of Melt Season of Seasonal Snow in
Northern Land Areas of 40∘ N–80∘ N during 1982–2015,
Remote Sens., 10, 1619, https://doi.org/10.3390/rs10101619, 2018.
Augustine, J.: Basic measurements of radiation at station Desert Rock (2008-11), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.719888, 2009a.
Augustine, J.: Basic measurements of radiation at station Desert Rock
(2009-04), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.719908, 2009b.
Augustine, J.: Basic measurements of radiation at station Fort Peck
(2008-11), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.721298, 2009c.
Augustine, J.: Basic measurements of radiation at station Fort Peck
(2009-04), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.721314, 2009d.
Augustine, J.: Basic measurements of radiation at station Desert Rock
(2018-07), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.899138, 2019a.
Augustine, J.: Basic measurements of radiation at station Fort Peck
(2018-07), NOAA – Air Resources Laboratory, Boulder, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.900179, 2019b.
Briegleb, B. and Ramanathan, V.: Spectral and diurnal variations in clear
sky planetary albedo, J. Appl. Meteorol., 21, 1160–1171, 1982.
Briegleb, B., Minnis, P., Ramanathan, V., and Harrison, E.: Comparison of
regional clear-sky albedos inferred from satellite observations and model
computations, J. Clim. Appl. Meteorol., 25, 214–226, 1986.
Brisson, A., Le Borgne, P., and Marsouin, A.: Development of algorithms for
Surface Solar Irradiance retrieval at O&SI SAF Low and Mid Latitudes,
Ocean & Sea Ice SAF Scientific Report, 31 pp., 1999.
Devasthale, A., Raspaud, M., Schlundt, C., Hanschmann, T., Finkensieper, S.,
Dybbroe, A., Hörnquist, S., Håkansson, N., Stengel, M., and
Karlsson, K.-G.: PyGAC: An open-source, community-driven Python interface to
preprocess the nearly 40-year AVHRR Global Area Coverage (GAC) data record,
GSICS Quarterly, Summer Issue 2017, 11, 3–5, https://doi.org/10.7289/V5R78CFR, 2017.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018.
Dybbroe, A., Thoss, A., and Karlsson, K.-G.: NWCSAF AVHRR cloud detection
and analysis using dynamic thresholds and radiative transfer modelling –
Part I: Algorithm description, J. Appl. Meteorol., 44, 39–54, 2005.
EUMETSAT Ocean and Sea Ice Satellite Application Facility: Global sea ice
concentration interim climate data record 2016-onwards (v2.0, 2017),
OSI-430-b, OSI SAF FTP server/EUMETSAT Data Center [data set], https://doi.org/10.15770/EUM_SAF_OSI_NRT_2008, 2021.
GCOS: The Global Observing System for Climate: Implementation Needs,
Reference Number GCOS-200, WMO, 2016.
Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R.: Global land cover classification at 1km spatial resolution using a classification tree approach, Int. J. Remote Sens., 21, 1331–1364, 2000.
Heidinger, A. K., Anne, V. R., and Dean, C.: Using MODIS to Estimate Cloud
Contamination of the AVHRR Data Record, J. Atmos. Ocean. Tech., 19, 586–601, 2002.
Heidinger, A. K., Straka, W. C., Molling, C. C., Sullivan, J. T., and Wu, X.
Q.: Deriving an inter-sensor consistent calibration for the AVHRR solar
reflectance data record, Int. J. Remote Sens., 31, 6493–6517,
https://doi.org/10.1080/01431161.2010.496472, 2010.
Hersbach, H., Bell, B., Berrisford, P., et al.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Jääskeläinen, E., Manninen, T., Tamminen, J., and Laine, M.: The
Aerosol Index and Land Cover Class Based Atmospheric Correction Aerosol
Optical Depth Time Series 1982–2014 for the SMAC Algorithm, Remote Sens.,
9, 1095, https://doi.org/10.3390/rs9111095, 2017.
Karlsson, K.-G. and Devasthale, A.: Inter-Comparison and Evaluation of the
Four Longest Satellite-Derived Cloud Climate Data Records: CLARA-A2, ESA
Cloud CCI V3, ISCCP-HGM, and PATMOS-x, Remote Sens., 10, 1567, https://doi.org/10.3390/rs10101567, 2018.
Karlsson, K.-G. and Håkansson, N.: Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record, Atmos. Meas. Tech., 11, 633–649, https://doi.org/10.5194/amt-11-633-2018, 2018.
Karlsson, K.-G.; Johansson, E.; and Devasthale, A.: Advancing the uncertainty characterisation of cloud masking in passive satellite imagery : Probabilistic formulations for NOAA AVHRR data, Remote Sens. Environ., 158, 126–139, https://doi.org/10.1016/j.rse.2014.10.028, 2015.
Karlsson, K.-G., Anttila, K., Trentmann, J., Stengel, M., Fokke Meirink, J., Devasthale, A., Hanschmann, T., Kothe, S., Jääskeläinen, E., Sedlar, J., Benas, N., van Zadelhoff, G.-J., Schlundt, C., Stein, D., Finkensieper, S., Håkansson, N., and Hollmann, R.: CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data, Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, 2017.
Karlsson, K.-G., Johansson, E., Håkansson, N., Sedlar, J., and Eliasson, S.: Probabilistic Cloud Masking for the Generation of CM SAF Cloud Climate Data Records from AVHRR and SEVIRI Sensors, Remote Sens., 12, 713, https://doi.org/10.3390/rs12040713, 2020.
Knap, W.: Basic and other measurements of radiation at station Cabauw (2018-07), Koninklijk Nederlands Meteorologisch Instituut, De Bilt, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.892887, 2018.
König-Langlo, G.: Basic and other measurements of radiation at Neumayer
Station (2008-11), Alfred Wegener Institute, Helmholtz Centre for Polar and
Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.716641, 2009.
König-Langlo, G., Sieger, R., Schmithüsen, H., Bücker, A.,
Richter, F., and Dutton, E. G.: The Baseline Surface Radiation Network and its World Radiation Monitoring Centre at the Alfred Wegener Institute, GCOS-174, WCRP Rep. 24/2013, 30 pp., https://bsrn.awi.de/fileadmin/user_upload/bsrn.awi.de/Publications/gcos-174.pdf (last access: 12 January 2022), 2013.
Koren, I. and Joseph, J. H.: The histogram of the brightness distribution
of clouds in high-resolution remotely sensed images, J. Geophys. Res., 105, 29369–29377, https://doi.org/10.1029/2000JD900394, 2000.
Liang, S.: Narrowband to broadband conversions of land surface albedo: I
Algorithms, Remote Sens. Environ., 76, 213–238, 2000.
Liang, S., Shuey, C. J., Russ, A. L., Fang, H., Chen, M., Walthall, C. L.,
Daughtry, C. S. T., and Hunt Jr., R.: Narrowband to broadband conversions of
land surface albedo: II Validation, Remote Sens. Environ., 84, 25–41, 2002.
Long, C.: Basic measurements of radiation at station Southern Great Plains
(2008-11), Argonne National Laboratory, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.724290, 2009a.
Long, C.: Basic measurements of radiation at station Southern Great Plains
(2009-04), Argonne National Laboratory, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.724300, 2009b.
Lucht, W., Schaaf, C. B., and Strahler, A. H.: An algorithm for the retrieval
of Albedo from space using semiempirical BRDF models, IEEE T. Geosci. Remote, 38, 977–998, https://doi.org/10.1109/36.841980, 2000.
Manninen, T., Siljamo, N., Poutiainen, J., Vuilleumier, L., Bosveld, F., and
Gratzki, A.: Cloud statistics based estimation of land surface albedo from
AVHRR data, Proc. of SPIE, Remote Sensing of Clouds and the Atmosphere IX,
Gran Canaria, Spain, 13–15 September 2004, SPIE, 5571, 412–423, 2004.
Manninen, T., Andersson, K., and Riihelä, A.: Topography
correction of the CM-SAF surface albedo product SAL, in: Proc. 2011 EUMETSAT
Meteorological Satellite Conference, Oslo, 5–9 September 2011, CD, 8 pp., 2011.
Manninen, T., Jääskeläinen, E., and Riihelä, A.: Black and
White-Sky Albedo Values of Snow: In Situ Relationships for AVHRR-Based
Estimation Using CLARA-A2 SAL, Can. J. Remote Sens., 45, 18 pp.,
https://doi.org/10.1080/07038992.2019.1632177, 2019.
Manninen, T., Jääskeläinen, E., and Riihelä, A.: Diurnal Black-Sky Surface Albedo Parameterization of Snow, J. Appl. Meteorol. Clim., 59, 1415–1428, https://doi.org/10.1175/JAMC-D-20-0036.1, 2020.
Manninen, T., Anttila, K., Jääskeläinen, E., Riihelä, A., Peltoniemi, J., Räisänen, P., Lahtinen, P., Siljamo, N., Thölix, L., Meinander, O., Kontu, A., Suokanerva, H., Pirazzini, R., Suomalainen, J., Hakala, T., Kaasalainen, S., Kaartinen, H., Kukko, A., Hautecoeur, O., and Roujean, J.-L.: Effect of small-scale snow surface roughness on snow albedo and reflectance, The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, 2021.
Mayor, S., Smith Jr., W. L., Nguyen, L., Alberta, A., Minnis, P., Whitlock,
C. H., and Schuster, G. L.: Asymmetry in the Diurnal Variation of Surface
Albedo, Proc. of International Geoscience and Remote Sensing Symposium,
IGARSS'96, Lincoln, 27–31 May 1996, 4, 1911–1913, 1996.
Pirazzini, R.: Surface albedo measurements over Antarctic sites in summer,
J. Geophys. Res., 109, D20118, https://doi.org/10.1029/2004JD004617, 2004.
Proud, S. R., Rasmussen, M. O., Fensholt, R., Sandholt, I., Shisanya, C.,
Mutero, W., Mbow, C., and Anyamba, A.: Improving the SMAC atmospheric
correction code by analysis of Meteosat Second Generation NDVI and surface
reflectance data, Remote Sens. Environ., 114, 1687–1698, https://doi.org/10.1016/j.rse.2010.02.020, 2010.
Rahman, H. and Dedieu, G.: SMAC: a simplified method for the atmospheric
correction of satellite measurements in the solar spectrum, Int. J. Remote Sens., 15, 123–143, https://doi.org/10.3390/rs9111095, 1994.
Riihelä, A., Manninen, T., Laine, V., Andersson, K., and Kaspar, F.: CLARA-SAL: a global 28 yr timeseries of Earth's black-sky surface albedo, Atmos. Chem. Phys., 13, 3743–3762, https://doi.org/10.5194/acp-13-3743-2013, 2013.
Román, M. O., Schaaf, C. B., Lewis, P., Gao, F., Anderson, G. P.,
Privette, J. L. Strahler, A. H., Woodcock, C. E., and Barnsley, M.: Assessing
the coupling between surface albedo derived from MODIS and the fraction of
diffuse skylight over spatially-characterized landscapes, Remote Sens.
Environ., 114, 738–760, https://doi.org/10.1016/j.rse.2009.11.014, 2010.
Roujean, J.-L., Leroy, M., and Deschamps, P.-Y.: A Bidirectional Reflectance
Model of the Earth's Surface for the Correction of Remote Sensing Data,
J. Geophys. Res., 97, 20455–20468, 1992.
Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., Dürr, B., Fuchs, P., Gratzki, A., Hechler, P., Hollmann, R., Johnston, S., Karlsson, K.-G., Manninen, T., Müller, R., Reuter, M., Riihelä, A., Roebeling, R., Selbach, N., Tetzlaff, A., Thomas, W., Werscheck, M., Wolters, E., and Zelenka, A.: Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF), Atmos. Chem. Phys., 9, 1687–1709, https://doi.org/10.5194/acp-9-1687-2009, 2009.
Steffen, K., Box, J. E., and Abdalati, W.: Greenland Climate Network: GC-Net, edited by: Colbeck, S. C., CRREL 96-27 Special Report on Glaciers, Ice Sheets and Volcanoes, trib. to M. Meier, 98–103, 1996.
Stubenrauch, C. J., Kinne, S., Heidinger, A., et al.: Lessons learned from the updated GEWEX Cloud Assessment database. In preparation, 2022.
Vuilleumier, L.: Basic and other measurements of radiation at station
Payerne (2008-11), Swiss Meteorological Agency, Payerne, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.735084, 2010a.
Vuilleumier, L.: Basic and other measurements of radiation at station
Payerne (2009-04), Swiss Meteorological Agency, Payerne, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.735299, 2010b.
Vuilleumier, L.: Basic and other measurements of radiation at station
Payerne (2018-07), Swiss Meteorological Agency, Payerne, PANGAEA [data set], doi10.1594/PANGAEA.898990, 2019.
Wu, A., Li, Z., and Cihlar, J.: Effects of land cover type and greenness on
advanced very high resolution radiometer bidirectional reflectances:
Analysis and removal, J. Geophys. Res., 100, 9179–9192, 1995.
Yamanouchi, T.: Basic and other measurements of radiation at station Syowa
(2008-11), National Institute of Polar Research, Tokyo, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.741002, 2010.
Yang, F., Mitchell, K., Hou, Y.-T., Dai, Y., Zeng, X., Wang, Z., and Liang,
X.-Z.: Dependence of land surface albedo on solar zenith angle: Observations
and model parameterization, J. Appl. Meteorol. Climatol., 47, 2963–2982,
https://doi.org/10.1175/2008JAMC1843.1, 2008.
Short summary
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data. Instead of a binary cloud mask, it applies cloud probability values smaller than 20% of the A3 edition of the CLARA (CM SAF cLoud, Albedo and surface Radiation dataset from AVHRR data) record provided by the Satellite Application Facility on Climate Monitoring (CM SAF) project of EUMETSAT. According to simulations, the 90% quantile was 1.1% for the absolute albedo error and 2.2% for the relative error.
A new method for cloud-correcting observations of surface albedo is presented for AVHRR data....