Articles | Volume 16, issue 1
https://doi.org/10.5194/amt-16-135-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-135-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Source apportionment of black carbon and combustion-related CO2 for the determination of source-specific emission factors
Balint Alfoldy
CORRESPONDING AUTHOR
Aerosol d.o.o, Ljubljana, 1000, Slovenia
Asta Gregorič
Aerosol d.o.o, Ljubljana, 1000, Slovenia
Center for Atmospheric Research, University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia
Matic Ivančič
Aerosol d.o.o, Ljubljana, 1000, Slovenia
Irena Ježek
Aerosol d.o.o, Ljubljana, 1000, Slovenia
Martin Rigler
Aerosol d.o.o, Ljubljana, 1000, Slovenia
Related authors
Irena Ježek Brecelj, Asta Gregorič, Lucijan Zgonik, Tjaša Rutar, Matic Ivančič, Bálint Alföldy, Griša Močnik, and Martin Rigler
Atmos. Chem. Phys., 25, 9113–9125, https://doi.org/10.5194/acp-25-9113-2025, https://doi.org/10.5194/acp-25-9113-2025, 2025
Short summary
Short summary
Following a major car industry scandal involving diesel emissions tests, the European Union (EU) introduced new testing procedures. However, concerns remained about their effectiveness. Our independent study examined real-world vehicle emissions and revealed encouraging findings: modern diesel cars perform as well as, or even better than, gasoline cars in terms of nitrogen oxide emissions. We found the same pattern for soot particles, challenging common perceptions about diesel's environmental impact.
Irena Ježek Brecelj, Asta Gregorič, Lucijan Zgonik, Tjaša Rutar, Matic Ivančič, Bálint Alföldy, Griša Močnik, and Martin Rigler
Atmos. Chem. Phys., 25, 9113–9125, https://doi.org/10.5194/acp-25-9113-2025, https://doi.org/10.5194/acp-25-9113-2025, 2025
Short summary
Short summary
Following a major car industry scandal involving diesel emissions tests, the European Union (EU) introduced new testing procedures. However, concerns remained about their effectiveness. Our independent study examined real-world vehicle emissions and revealed encouraging findings: modern diesel cars perform as well as, or even better than, gasoline cars in terms of nitrogen oxide emissions. We found the same pattern for soot particles, challenging common perceptions about diesel's environmental impact.
Jesús Yus-Díez, Jeronimo Escribano, Marco Pandolfi, Andres Alastuey, Cristina González-Flórez, Adolfo Gonzalez-Romero, Maria Gonçalves Ageitos, Matic Ivančič, Martina Klose, Konrad Kandler, Vicenzo Obiso, Agnesh Panta, Cristina Reche, Martin Rigler, Xavier Querol, and Carlos Perez Garćia-Pando
EGUsphere, https://doi.org/10.5194/egusphere-2025-2571, https://doi.org/10.5194/egusphere-2025-2571, 2025
Short summary
Short summary
Here we present measurements of dust optical properties during active emissions at a source region in the Moroccan Sahara. We present results on its single scattering albedo, absorption and scattering wavelength dependence and mass efficiency. Furthermore, we have performed imaginary refractive index (k) retrieval under varying assumptions of the refractive index real part, and particle sphericity. We also provide a comparison between the k retrievals and estimations on dust k from AERONET.
Aliki Christodoulou, Iasonas Stavroulas, Mihalis Vrekoussis, Maximillien Desservettaz, Michael Pikridas, Elie Bimenyimana, Jonilda Kushta, Matic Ivančič, Martin Rigler, Philippe Goloub, Konstantina Oikonomou, Roland Sarda-Estève, Chrysanthos Savvides, Charbel Afif, Nikos Mihalopoulos, Stéphane Sauvage, and Jean Sciare
Atmos. Chem. Phys., 23, 6431–6456, https://doi.org/10.5194/acp-23-6431-2023, https://doi.org/10.5194/acp-23-6431-2023, 2023
Short summary
Short summary
Our study presents, for the first time, a detailed source identification of aerosols at an urban background site in Cyprus (eastern Mediterranean), a region strongly impacted by climate change and air pollution. Here, we identify an unexpected high contribution of long-range transported pollution from fossil fuel sources in the Middle East, highlighting an urgent need to further characterize these fast-growing emissions and their impacts on regional atmospheric composition, climate, and health.
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, María Cruz Minguillón, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, and Marco Pandolfi
Atmos. Chem. Phys., 22, 8439–8456, https://doi.org/10.5194/acp-22-8439-2022, https://doi.org/10.5194/acp-22-8439-2022, 2022
Short summary
Short summary
This study presents the absorption enhancement of internally and externally mixed black carbon (BC) particles in a Mediterranean city and countryside. We showed the importance of secondary organic aerosols (SOAs) and particle ageing by increasing the BC absorption enhancement. We performed a trend analysis on the absorption enhancement. We found a positive trend of the absorption enhancement at the regional station in summer driven by the increase over time of the relative contribution of SOA.
Olga B. Popovicheva, Nikolaos Evangeliou, Vasilii O. Kobelev, Marina A. Chichaeva, Konstantinos Eleftheriadis, Asta Gregorič, and Nikolay S. Kasimov
Atmos. Chem. Phys., 22, 5983–6000, https://doi.org/10.5194/acp-22-5983-2022, https://doi.org/10.5194/acp-22-5983-2022, 2022
Short summary
Short summary
Measurements of black carbon (BC) combined with atmospheric transport modeling reveal that gas flaring from oil and gas extraction in Kazakhstan, Volga-Ural, Komi, Nenets and western Siberia contributes the largest share of surface BC in the Russian Arctic dominating over domestic, industrial and traffic sectors. Pollution episodes show an increasing trend in concentration levels and frequency as the station is in the Siberian gateway of the highest anthropogenic pollution to the Russian Arctic.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Vera Bernardoni, Luca Ferrero, Ezio Bolzacchini, Alice Corina Forello, Asta Gregorič, Dario Massabò, Griša Močnik, Paolo Prati, Martin Rigler, Luca Santagostini, Francesca Soldan, Sara Valentini, Gianluigi Valli, and Roberta Vecchi
Atmos. Meas. Tech., 14, 2919–2940, https://doi.org/10.5194/amt-14-2919-2021, https://doi.org/10.5194/amt-14-2919-2021, 2021
Short summary
Short summary
An instrument-dependent wavelength-independent parameter (C) is often used to face multiple-scattering issues affecting aerosol light absorption measurements by Aethalometers. Instead, we determined multi-wavelength C by comparison with absorption measurements of samples collected in parallel performed by an instrument developed in-house. Considering C wavelength dependence, harmonized results were obtained applying source and component apportionment models to data from different Aethalometers.
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, and Ezio Bolzacchini
Atmos. Chem. Phys., 21, 4869–4897, https://doi.org/10.5194/acp-21-4869-2021, https://doi.org/10.5194/acp-21-4869-2021, 2021
Short summary
Short summary
The work experimentally quantifies the impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon. The most impacting clouds were stratocumulus, altostratus and stratus. Clouds caused a decrease of the heating rate of about 12 % per okta. The black carbon decease was slightly higher with respect to that of brown carbon. This study highlights the need to take into account the role of cloudiness when modelling light-absorbing aerosol climate forcing.
Asta Gregorič, Luka Drinovec, Irena Ježek, Janja Vaupotič, Matevž Lenarčič, Domen Grauf, Longlong Wang, Maruška Mole, Samo Stanič, and Griša Močnik
Atmos. Chem. Phys., 20, 14139–14162, https://doi.org/10.5194/acp-20-14139-2020, https://doi.org/10.5194/acp-20-14139-2020, 2020
Short summary
Short summary
We present a new method for the determination of highly time-resolved and source-separated black carbon emission rates. The atmospheric dynamics is quantified using the atmospheric radon concentration. Different intensity and daily dynamics of black carbon emission rates for two different environments are presented: urban and rural area. The method can be used to assess the efficiency of pollution mitigation measures, thereby avoiding the influence of variable meteorology.
Cited articles
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Alfoldy, B. and Steib, R.: Investigating the Real Air Pollution Exchange at
Urban Sites Based on Time Variation of Columnar Content of the Cpmponents,
Water Air Soil. Pollut., 220, 9–21, https://doi.org/10.1007/s11270-010-0730-4, 2011.
Alves, C. A., Lopes, D. J., Calvo, A. I., Evtyugina, M., Rocha, S., and Nunes,
T.: Emissions from Light-Duty Diesel and Gasoline in-use Vehicles Measured
on Chassis Dynamometer Test Cycles, Aerosol Air Qual. Res.,
15, 99–116, https://doi.org/10.4209/aaqr.2014.01.0006, 2015.
Ban-Weiss, G. A., Lunden, M. M., Kirchstetter, T. W., and Harley, R. A.:
Measurement of black carbon and particle number emission factors from
individual heavy-duty trucks, Environ. Sci. Technol., 43,
1419–1424, https://doi.org/10.1021/es8021039, 2009.
Blanco-Alegre, C., Calvoa, A. I., Alves, C., Fialho, P., Nunes, T., Gomes,
J., Castro, A., Oduber F., Coz, E., and Fraile, R.: Aethalometer measurements in
a road tunnel: A step forward in the characterization of black carbon
emissions from traffic, Sci. Total Environ., 703, 135483, https://doi.org/10.1016/j.atmosres.2021.105980, 2020.
Blanco-Alegre, C., Fialho, P., Calvo, A.I., Castro, A., Coz, E., Oduber, F.,
Prevot, A. S. H., Močnik, G., Alves, C., Giardi, F., Pazzi, G., and Fraile,
R.: Contribution of coal combustion to black carbon: Coupling tracers with
the aethalometer model, Atmos. Res., 267, 105980, https://doi.org/10.1016/j.atmosres.2021.105980, 2022.
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous
Particles: An Investigative Review, Aerosol Sci. Technol., 40, 27–67,
https://doi.org/10.1080/02786820500421521, 2006.
Brimblecombe, P., Townsend, T., Lau, C. F., Rakowska, A., Chan, T. L.,
Mocnik, G., and Ning, Z.: Through-tunnel estimates of vehicle fleet emission
factors, Atmos. Environ., 123, 180–189, 2015.
Brown, S. G., Lam-Snyder, J., McCarthy, M. C., Pavlovic, N. R., D'Andrea,
S., Hanson, J., Sullivan, A. P., and Hafner, H. R.: Assessment of Ambient Air
Toxics and Wood Smoke Pollution among Communities in Sacramento County. Int.
J. Environ. Res. Public. Health., 17, 1080, https://doi.org/10.3390/ijerph17031080,
2020.
Chen, Y., Shen, G., Liu, W., Du, W., Su, S., Duan, Y., Lin, N., Zhuo, S.,
Wang, X., Xing, B., and Tao, S.: Field measurement and estimate of gaseous and
particle pollutant emissions from cooking and space heating processes in
rural households, northern China, Atmos. Environ., 125, 265–271,
2016.
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M. S., Wang, S.,
Hao, J., Zhang, H., He, C., Guo, H., Fu, H., Miljevic, B., Morawska, L.,
Thai, P., Fat LAM, Y., Pereira, G., Ding, A., Huang, X., and Dumka, U. C.: A
review of biomass burning: Emissions and impacts on air quality, health and
climate in China, Sci. Total Environ., 579, 1000–1034,
https://doi.org/10.1016/j.scitotenv.2016.11.025, 2017.
Chiloane, K. E., Beukes, J. P., van Zyl, P. G., Maritz, P., Vakkari, V., Josipovic, M., Venter, A. D., Jaars, K., Tiitta, P., Kulmala, M., Wiedensohler, A., Liousse, C., Mkhatshwa, G. V., Ramandh, A., and Laakso, L.: Spatial, temporal and source contribution assessments of black carbon over the northern interior of South Africa, Atmos. Chem. Phys., 17, 6177–6196, https://doi.org/10.5194/acp-17-6177-2017, 2017.
Cooper, J. (edit): Statistical Report 2020, Fuels Europe,
https://www.fuelseurope.eu/wp-content/uploads/SR_FuelsEurope-_2020-1.pdf (last access: January 2023), 2020.
Cuesta-Mosquera, A., Močnik, G., Drinovec, L., Müller, T., Pfeifer, S., Minguillón, M. C., Briel, B., Buckley, P., Dudoitis, V., Fernández-García, J., Fernández-Amado, M., Ferreira De Brito, J., Riffault, V., Flentje, H., Heffernan, E., Kalivitis, N., Kalogridis, A.-C., Keernik, H., Marmureanu, L., Luoma, K., Marinoni, A., Pikridas, M., Schauer, G., Serfozo, N., Servomaa, H., Titos, G., Yus-Díez, J., Zioła, N., and Wiedensohler, A.: Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities, Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, 2021.
Dallmann, T. R., Harley, R. A., and Kirchstetter, T. W.: Effects of diesel
particle filter retrofits and accelerated fleet turnover on drayage truck
emissions at the port of Oakland, Environ. Sci. Technol., 45,
10773–10779, https://doi.org/10.1021/es202609q, 2011.
Deng, J., Guo, H., Zhang, H., Zhu, J., Wang, X., and Fu, P.: Source apportionment of black carbon aerosols from light absorption observation and source-oriented modeling: an implication in a coastal city in China, Atmos. Chem. Phys., 20, 14419–14435, https://doi.org/10.5194/acp-20-14419-2020, 2020.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The ”dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Dumka, U. C., Kaskaoutis, D. G., Tiwari, S., Safai, P. D., Attri, S. D.,
Soni, V. K., Singh, N., and Mihalopoulos, N.: Assessment of biomass burning and
fossil fuel contribution to black carbon concentrations in Delhi during
winter, Atmos. Environ., 194, 93–109, https://doi.org/10.1016/j.atmosenv.2018.09.033, 2018.
EEA: EMEP/EEA air pollution emission inventory guidebook. Technical guidance
to prepare national emission inventories, EEA Report No 13/2019, ISSN
1977–8449, https://doi.org/10.2800/293657, 2019.
Enroth, J., Saarikoski, S., Niemi, J., Kousa, A., Ježek, I., Močnik, G., Carbone, S., Kuuluvainen, H., Rönkkö, T., Hillamo, R., and Pirjola, L.: Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area, Atmos. Chem. Phys., 16, 5497–5512, https://doi.org/10.5194/acp-16-5497-2016, 2016.
Giechaskiel, B., Bonnel, P., Perujo, A., and Dilara, P.: Solid Particle Number
(SPN) Portable Emissions Measurement Systems (PEMS) in the European
Legislation: A Review, Int. J. Environ. Res.
Pub. Health, 16, 4819, https://doi.org/10.3390/ijerph16234819, 2019.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeosci., 118, 317–328,
https://doi.org/10.1002/jgrg.20042, 2013.
Glojek, K., Močnik, G., Alas, H. D. C., Cuesta-Mosquera, A., Drinovec, L., Gregorič, A., Ogrin, M., Weinhold, K., Ježek, I., Müller, T., Rigler, M., Remškar, M., van Pinxteren, D., Herrmann, H., Ristorini, M., Merkel, M., Markelj, M., and Wiedensohler, A.: The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area, Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, 2022.
Gonçalves, C., Alves, C., and Pio, C.: Inventory of fine particulate organic
compound emissions from residential wood combustion in Portugal, Atmospheric
Environment, 50, 297–306, https://doi.org/10.1016/j.atmosenv.2011.12.013, 2012.
Hansen, A. D. A. and Rosen, H.: Individual measurement of the emission
factor of aerosol black carbon in automobile plumes, J. Air Waste Manage.
Assoc., 40, 1654–1657, 1990.
Healy, R. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., Jeong, C.-H.,
Wang, J. M., Hilker, N., Evans, G. J., Doerksen, G., Jones, K., and Munoz, A.:
Ambient measurements and source apportionment of fossil fuel and biomass
burning black carbon in Ontario, Atmos. Environ., 161, 34–47,
https://doi.org/10.1016/j.atmosenv.2017.04.034, 2017.
Healy, R. M., Wang, J. M., Sofowote, U., Su, Y., Debosz, J., Noble, M.,
Munoz, A., Jeong, C-H., Hilker, N., Evans, G. J., and Doerksen G.: Black carbon
in the Lower Fraser Valley, British Columbia: Impact of 2017 wildfires on
local air quality and aerosol optical properties, Atmos. Environ.,
217, 116976, https://doi.org/10.1016/j.atmosenv.2019.116976, 2019.
Helin, A., Niemi, J. V., Virkkula, A., Pirjola, L., Teinila, K., Backman,
J., Aurela, M., Saarikoski, S., Ronkko, T., Asmi, E., and Timonen, H.:
Characteristics and source apportionment of black carbon in the Helsinki
metropolitan area, Finland, Atmos. Environ., 190, 87–98, 2018.
Holder, A. L., Yelverton, T. L. B., Brashear, A. T., and Kariher, P. H.: Black
carbon emissions from residential wood combustion appliances, US-EPA report,
EPA/600/R-20/039, https://cfpub.epa.gov/si/si_public_record_Report.cfm?dirEntryId=348245&Lab=CEMM (last access: January 2023), May, 2019.
Huss, A., Maas, H., and Hass, H.: Well-to-wheels analysis of future
automotive fuels and powertrains in the European context, Tankto-wheels
(TTW) report, version 4, EC Joint Research Centre, Luxembourg,
https://doi.org/10.2788/40409, 2013.
Ivančič, M., Gregorič, A., Lavrič, G., Alföldy, B.,
Ježek, I., Hasheminassab, S., Pakbin, P., Ahangar, F., Sowlat, M.,
Boddeker S., and Rigler, M.: Two-year-long high-time-resolution apportionment of
primary and secondary carbonaceous aerosols in the Los Angeles Basin using
an advanced total carbon–black carbon (TC-BC(λ)) method, Sci. Total Environ., 848, 157606, https://doi.org/10.1016/j.scitotenv.2022.157606, 2022.
Janssen, N. A. H., Hoek, G., Simic-Lawson, M., Fischer, P., van Bree, L.,
ten Brink, H., Keuken, M., Atkinson, R. W., Anderson, H. R., Brunekreef, B., and
Cassee, F. R.: Black carbon as an additional indicator of the adverse health
effects of Airborne particles compared with PM10 and PM2.5,
Environ. Health Perspect., 119, 1691–1699.
https://doi.org/10.1289/ehp.1003369, 2011.
Ježek, I., Katrašnik, T., Westerdahl, D., and Močnik, G.: Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method, Atmos. Chem. Phys., 15, 11011–11026, https://doi.org/10.5194/acp-15-11011-2015, 2015.
Kalogridis, A.-C., Vratolis, S., Liakakou, E., Gerasopoulos, E., Mihalopoulos, N., and Eleftheriadis, K.: Assessment of wood burning versus fossil fuel contribution to wintertime black carbon and carbon monoxide concentrations in Athens, Greece, Atmos. Chem. Phys., 18, 10219–10236, https://doi.org/10.5194/acp-18-10219-2018, 2018.
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., and Amann,
M.: Contributions to cities' ambient particulate matter (PM): A systematic
review of local source contributions at global level, Atmos. Environ., 120,
475–483, 2015.
Karanasiou, A., Alastuey, A., Amato, F., Renzi, M., Stafoggia, M., Tobias,
A., Reche, C., Forastiere, F., Gumy, S., Mudu, P., and Querol, X.: Short-term
health effects from outdoor exposure to biomass burning emissions: A review,
Sci. Total Environ., 781, 146739,
https://doi.org/10.1016/j.scitotenv.2021.146739, 2021.
Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J., and Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. Chem. Phys., 17, 8681–8723, https://doi.org/10.5194/acp-17-8681-2017, 2017.
Liakakou, E., Stavroulas, I., Kaskaoutis, D. G., Grivas, G.,
Paraskevopoulou, D., Dumka, U. C., Tsagkaraki, M., Bougiatioti, A.,
Oikonomou, K., Sciare, J., Gerasopoulos, E., and Mihalopoulos, N.: Long-term
variability, source apportionment and spectral properties of black carbon at
an urban background site in Athens, Greece, Atmos. Environ., 222, 117137,
https://doi.org/10.1016/j.atmosenv.2019.117137, 2020.
Mbengue, S., Serfozo, N., Schwarz, J., Zikova, N., Smejkalova, A. H., and
Holoubek, I.: Characterization of Equivalent Black Carbon at a Regional
Background Site in Central Europe: Variability and Source Apportionment,
Environ. Pollut., 260, 113771, https://doi.org/10.1016/j.envpol.2019.113771, 2020.
Milinković, A., Gregorič, A., Džaja Grgičin, V., Vidič,
S., Penezić, A., Cvitešić Kušan, A., Bakija Alempijević,
S., Kasper-Giebl, A., and Frka, S.: Variability of black carbon aerosol
concentrations and sources at a Mediterranean coastal region, Atmos.
Pollut. Res., 12, 101221, https://doi.org/10.1016/j.apr.2021.101221, 2021.
Mitchell, E. J. S., Coulson, G., Butt, E. W., Forster, P. M., Jones, J. M.,
and Williams, A.: Heating with biomass in the United Kingdom: Lessons from New
Zealand, Atmos. Environ., 152, 431–454, https://doi.org/10.1016/j.atmosenv.2016.12.042, 2017.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D.,
Koenig, J. Q., and Smith, K. R.: Woodsmoke Health Effects: A Review, Inhalation
Toxicol., 19, 67–106, 2007.
Nielsen, I. E., Eriksson, A. C., Lindgren, R., Martinsson, J., Nystrom, R.,
Nordin, E. Z., Sadiktsis, I., Boman, C., Nøjgaard, J. K., and Pagels, J.:
Time-resolved analysis of particle emissions from residential biomass
combustion – Emissions of refractory black carbon, PAHs and organic
tracers, Atmos. Environ., 165, 179–190, 2017.
Ogrizek, M., Gregorič, A., Ivančič, M., Contini, D., Skube, U.,
Vidović, K., Bele, M., Šala, M., Gunde, M. K., Rigler, M., Menart,
E., and Kroflič, A.: Characterization of fresh PM deposits on
calcareous stone surfaces: Seasonality, source apportionment and soiling
potential, Sci. Total Environ., 856, 159012,
https://doi.org/10.1016/j.scitotenv.2022.159012, 2023.
Olivares, G., Ström, J., Johansson, C., and Gidhagen, L.: Estimates of black
carbon and size-resolved particle number emission factors from residential
wood burning based on ambient monitoring and model simulations, J. Air Waste Manage. Assoc., 58, 838–848, https://doi.org/10.3155/1047-3289.58.6.838, 2008.
Park, G., Kim, K., Park, T., Kang, S., Ban, J., Choi, S., Yu, D. G., Lee,
S., Lim, Y., Kim, S., Lee, J., Woo, J. H., and Lee, T.: Characterizing black
carbon emissions from gasoline, LPG, and diesel vehicles via transient
chassis-dynamometer tests, Appl. Sci., 10, 5856, https://doi.org/10.3390/app10175856,
2020.
Querol, X. (project coordinator): Emission Factors of Biomass Burning,
Life-AIRUSE report 9, LIFE11/ENV/ES/584, 2016/12, 1–30, http://airuse.eu/wp-content/uploads/2013/11/R09_AIRUSE-Emission-factors-for-biomass-burning.pdf (last access: January 2023), 2016.
R Core Team: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: January 2023), 2021.
Reddington, C. L., Morgan, W. T., Darbyshire, E., Brito, J., Coe, H., Artaxo, P., Scott, C. E., Marsham, J., and Spracklen, D. V.: Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model, Atmos. Chem. Phys., 19, 9125–9152, https://doi.org/10.5194/acp-19-9125-2019, 2019.
Sánchez-Ccoyllo, O. R., Ynoue, R. Y., Martins, L. D., Astolfo, R.,
Miranda, R. M., Freitas, E. D., Borges, A. S., Fornaro, A., Freitas, H.,
Moreira, A., and Andrade, M. F.: Vehicular particulate matter emissions in road
tunnels in Sao Paulo, Brazil, Environ. Monitor. Assess., 149, 241–249, https://doi.org/10.1007/s10661-008-0198-5, 2009.
Sandradewi, J., Prevot, A. S. H., Szidat, S., Perron, N., Alfarra, R. M.,
Lanz, V. A., Weingarten, E., and Baltensperger, U.: Using aerosol light
absorption measurements for the quantitative determination of wood burning
and traffic emission contributions to particulate matter, Environ. Sci.
Technol., 42, 3316–3323, 2008.
Shen, H., Luo, Z., Xiong, R., Liu, X., Zhang, L., Li, Y., Du, W., Chen, Y.,
Cheng, H., Shen, G., and Tao, S.: A critical review of pollutant emission from
fuel combustion in home stoves, Environ. Int., 157, 106841, https://doi.org/10.1016/j.envint.2021.106841, 2021.
Sigsgaard, T., Forsberg, B., Annesi-Maesano, I., Blomberg, A., Bølling,
A., Boman, C., Bønløkke, J., Brauer, M., Bruce, N., Héroux, M. E.,
Hirvonen, M. R., Kelly, F., Künzli, N., Lundbäck, B.,
Moshammer, H., Noonan, C., Pagels, J., Sallsten, G., Sculier, J. P., and
Brunekreef, B.: Health Impacts of Anthropogenic Biomass Burning in the
Developed World, Eur. Respir. J., 46, 1577–1588, 2015.
Smirnov, N. S., Korotkov, V. N., and Romanovskaya, A. A.: Black carbon
emission from wildfires on forest lands of the Russian Federation 2007–2017,
Russ. Meteorol. Hydrol., 40, 435–442, https://doi.org/10.3103/S1068373915070018, 2015.
Sun, J., Zhi, G., Jin, W., Chen, Y., Shen, G., Tian, C., Zhang, Y., Zong,
Z., Cheng, M., Zhang, X., Zhang, Y., Liu, C., Lu, J., Wang, H., Xiang, J.,
Tong, L., and Zhang, X.: Emission factors of organic carbon and elemental carbon
for residential coal and biomass fuels in China- A new database for 39
fuel-stove combinations, Atmos. Environ., 190, 241–248,
https://doi.org/10.1016/j.atmosenv.2018.07.032, 2018.
Tomlin, A. S.: Air Quality and Climate Impacts of Biomass Use as an Energy
Source: A Review, Ener.Fuels, 35, 14213–14240,
https://doi.org/10.1021/acs.energyfuels.1c01523, 2021.
Trubetskaya, A., Lin, C., Ovadnevaite, J., Ceburnis, D., O'Dowd, C., Leahy,
J. J., Monaghan, R. F. D., Johnson, R., Layden, P., and Smith, W.: Study of
Emissions from Domestic Solid-Fuel Stove Combustion in Ireland, Ener.
Fuels, 35, 4966–4978, https://doi.org/10.1021/acs.energyfuels.0c04148, 2021.
Val Martin, M., Honrath, R. E., Owen, R. C., Pfister, G., Fialho, P., and
Barata F.: Significant enhancements of nitrogen oxides, black carbon, and
ozone in the North Atlantic lower free troposphere resulting from North
American boreal wildfires, J. Geophys. Res., 111, D23S60,
https://doi.org/10.1029/2006JD007530, 2006.
Wang, X., Westerdahl, D., Hu, J., Wu, Y., Yin, H., Pan, X., and Zhang, K. M.:
On-road diesel vehicle emission factors for nitrogen oxides and black carbon
in two Chinese cities, Atmos. Environ., 46, 45–55, 2012.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and
Baltensperger, U.: Absorption of light by soot particles: determination of
the absorption coefficient by means of aethalometers, J. Aerosol
Sci., 34, 1445–1463, https://doi.org/10.1016/S0021-8502(03)00359-8, 2003.
Yus-Díez, J., Bernardoni, V., Močnik, G., Alastuey, A., Ciniglia, D., Ivančič, M., Querol, X., Perez, N., Reche, C., Rigler, M., Vecchi, R., Valentini, S., and Pandolfi, M.: Determination of the multiple-scattering correction factor and its cross-sensitivity to scattering and wavelength dependence for different AE33 Aethalometer filter tapes: a multi-instrumental approach, Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, 2021.
Zavala, M., Molina, L. T., Yacovitch, T. I., Fortner, E. C., Roscioli, J. R., Floerchinger, C., Herndon, S. C., Kolb, C. E., Knighton, W. B., Paramo, V. H., Zirath, S., Mejía, J. A., and Jazcilevich, A.: Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City, Atmos. Chem. Phys., 17, 15293–15305, https://doi.org/10.5194/acp-17-15293-2017, 2017.
Zheng, X., Wu, Y., Jiang, J., Zhang, S., Liu, H., Song, S., Li, Z., Fan, X.,
Fu, L., and Hao, J.: Characteristics of On-road Diesel Vehicles: Black
Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement,
Environ. Sci. Technol., 49, 13492–13500,
https://doi.org/10.1021/acs.est.5b04129, 2015.
Short summary
Atmospheric concentrations and source apportionment (SA) of black carbon (BC) and CO2 were determined in an urban environment during a heating season. BC particles were attributed to two major sources: traffic and heating. The BC SA was implemented by an Aethalometer model used for the SA of CO2 supposing that the source-specific CO2 components are correlated with the corresponding BC. Source-specific emission factors were determined as a ratio of corresponding BC and CO2 components.
Atmospheric concentrations and source apportionment (SA) of black carbon (BC) and CO2 were...