Articles | Volume 16, issue 11
https://doi.org/10.5194/amt-16-2943-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-2943-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of extreme precipitation events in Estonia and Italy using dual-polarization weather radar quantitative precipitation estimations
Roberto Cremonini
CORRESPONDING AUTHOR
Department of Physics, University of Helsinki, Helsinki, Finland
Department for Natural and Environmental Risks, Regional Agency for Environmental Protection of Piedmont, Turin, Italy
Tanel Voormansik
Institute of Physics, University of Tartu, Tartu, Estonia
Estonian Environment Agency, Tallinn, Estonia
Piia Post
Institute of Physics, University of Tartu, Tartu, Estonia
Dmitri Moisseev
Department of Physics, University of Helsinki, Helsinki, Finland
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Graziella Devoli, Davide Tiranti, Roberto Cremonini, Monica Sund, and Søren Boje
Nat. Hazards Earth Syst. Sci., 18, 1351–1372, https://doi.org/10.5194/nhess-18-1351-2018, https://doi.org/10.5194/nhess-18-1351-2018, 2018
Mattia Vaccarono, Renzo Bechini, Chandra V. Chandrasekar, Roberto Cremonini, and Claudio Cassardo
Atmos. Meas. Tech., 9, 5367–5383, https://doi.org/10.5194/amt-9-5367-2016, https://doi.org/10.5194/amt-9-5367-2016, 2016
Short summary
Short summary
The data quality of radars must be ensured and continuously monitored. The aim of this paper is to provide an integrated approach able to monitor the calibration of operational dual-polarization radars. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. This is considered adequate to automatically detect any unexpected change in the radar system requiring further investigations.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-155, https://doi.org/10.5194/amt-2024-155, 2024
Revised manuscript under review for AMT
Short summary
Short summary
Accurate KDP estimates are crucial in radar-based applications. We quantify the uncertainties of several publicly available KDP estimation methods for multiple rainfall intensities. We use C-band weather radar observations and employed a self-consistency KDP, estimated from reflectivity and differential reflectivity, as framework for the examination. Our study provides guidance in the performance, uncertainties and optimisation of the methods, focusing mainly on accuracy and robustness.
Jenna Ritvanen, Seppo Pulkkinen, Dmitri Moisseev, and Daniele Nerini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-99, https://doi.org/10.5194/gmd-2024-99, 2024
Preprint under review for GMD
Short summary
Short summary
Nowcasting models struggle with the rapid evolution of heavy rain, and common verification methods are unable to describe how accurately the models predict the growth and decay of heavy rainfall. We propose a framework to assess model performance. In the framework, convective cells are identified and tracked in the forecasts and observations, and then the model skill is evaluated by comparing differences between forecast and observed cells. We demonstrate the framework with 4 open-source models.
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Short summary
The open-source Video In Situ Snowfall Sensor (VISSS) is a novel instrument for characterizing particle shape, size, and sedimentation velocity in snowfall. It combines a large observation volume with relatively high resolution and a design that limits wind perturbations. The open-source nature of the VISSS hardware and software invites the community to contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Haoran Li, Dmitri Moisseev, Yali Luo, Liping Liu, Zheng Ruan, Liman Cui, and Xinghua Bao
Hydrol. Earth Syst. Sci., 27, 1033–1046, https://doi.org/10.5194/hess-27-1033-2023, https://doi.org/10.5194/hess-27-1033-2023, 2023
Short summary
Short summary
A rainfall event that occurred at Zhengzhou on 20 July 2021 caused tremendous loss of life and property. This study compares different KDP estimation methods as well as the resulting QPE outcomes. The results show that the selection of the KDP estimation method has minimal impact on QPE, whereas the inadequate assumption of rain microphysics and unquantified vertical air motion may explain the underestimated 201.9 mm h−1 record.
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022, https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Short summary
Doppler lidars and weather radars provide accurate wind measurements, with Doppler lidar usually performing better in dry weather conditions and weather radar performing better when there is precipitation. Operating both instruments together should therefore improve the overall performance. We investigate how well a co-located Doppler lidar and X-band radar perform with respect to various weather conditions, including changes in horizontal visibility, cloud altitude, and precipitation.
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022, https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
Short summary
The spatial and temporal restrictions of observations and oversimplified aerosol representation in large eddy simulations (LES) limit our understanding of aerosol–stratocumulus interactions. In this closure study of in situ and remote sensing observations and outputs from UCLALES–SALSA, we have assessed the role of convective overturning and aerosol effects in two cloud events observed at the Puijo SMEAR IV station, Finland, a diurnal-high aerosol case and a nocturnal-low aerosol case.
Victoria Anne Sinclair, Jenna Ritvanen, Gabin Urbancic, Irene Erner, Yurii Batrak, Dmitri Moisseev, and Mona Kurppa
Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022, https://doi.org/10.5194/amt-15-3075-2022, 2022
Short summary
Short summary
We investigate the boundary-layer (BL) height and surface stability in southern Finland using radiosondes, a microwave radiometer and ERA5 reanalysis. Accurately quantifying the BL height is challenging, and the diagnosed BL height can depend strongly on the method used. Microwave radiometers provide reliable estimates of the BL height but only in unstable conditions. ERA5 captures the BL height well except under very stable conditions, which occur most commonly at night during the warm season.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Andreas Lehmann, Kai Myrberg, Piia Post, Irina Chubarenko, Inga Dailidiene, Hans-Harald Hinrichsen, Karin Hüssy, Taavi Liblik, H. E. Markus Meier, Urmas Lips, and Tatiana Bukanova
Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, https://doi.org/10.5194/esd-13-373-2022, 2022
Short summary
Short summary
The salinity in the Baltic Sea is not only an important topic for physical oceanography as such, but it also integrates the complete water and energy cycle. It is a primary external driver controlling ecosystem dynamics of the Baltic Sea. The long-term dynamics are controlled by river runoff, net precipitation, and the water mass exchange between the North Sea and Baltic Sea. On shorter timescales, the ephemeral atmospheric conditions drive a very complex and highly variable salinity regime.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Anna Franck, Dmitri Moisseev, Ville Vakkari, Matti Leskinen, Janne Lampilahti, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Meas. Tech., 14, 7341–7353, https://doi.org/10.5194/amt-14-7341-2021, https://doi.org/10.5194/amt-14-7341-2021, 2021
Short summary
Short summary
We proposed a method to derive a convective boundary layer height, using insects in radar observations, and we investigated the consistency of these retrievals among different radar frequencies (5, 35 and 94 GHz). This method can be applied to radars at other measurement stations and serve as additional way to estimate the boundary layer height during summer. The entrainment zone was also observed by the 5 GHz radar above the boundary layer in the form of a Bragg scatter layer.
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Short summary
In natural clouds, ice-nucleating particles are expected to be rare above –10 °C. In the current paper, we found that the formation of ice columns is frequent in stratiform clouds and is associated with increased precipitation intensity and liquid water path. In single-layer shallow clouds, the production of ice columns was attributed to secondary ice production, despite the rime-splintering process not being expected to take place in such clouds.
Haoran Li, Alexei Korolev, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 13593–13608, https://doi.org/10.5194/acp-21-13593-2021, https://doi.org/10.5194/acp-21-13593-2021, 2021
Short summary
Short summary
Kelvin–Helmholtz (K–H) clouds embedded in a stratiform precipitation event were uncovered via radar Doppler spectral analysis. Given the unprecedented detail of the observations, we show that multiple populations of secondary ice columns were generated in the pockets where larger cloud droplets are formed and not at some constant level within the cloud. Our results highlight that the K–H instability is favorable for liquid droplet growth and secondary ice formation.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Julia Schneider, Kristina Höhler, Paavo Heikkilä, Jorma Keskinen, Barbara Bertozzi, Pia Bogert, Tobias Schorr, Nsikanabasi Silas Umo, Franziska Vogel, Zoé Brasseur, Yusheng Wu, Simo Hakala, Jonathan Duplissy, Dmitri Moisseev, Markku Kulmala, Michael P. Adams, Benjamin J. Murray, Kimmo Korhonen, Liqing Hao, Erik S. Thomson, Dimitri Castarède, Thomas Leisner, Tuukka Petäjä, and Ottmar Möhler
Atmos. Chem. Phys., 21, 3899–3918, https://doi.org/10.5194/acp-21-3899-2021, https://doi.org/10.5194/acp-21-3899-2021, 2021
Short summary
Short summary
By triggering the formation of ice crystals, ice-nucleating particles (INP) strongly influence cloud formation. Continuous, long-term measurements are needed to characterize the atmospheric INP variability. Here, a first long-term time series of INP spectra measured in the boreal forest for more than 1 year is presented, showing a clear seasonal cycle. It is shown that the seasonal dependency of INP concentrations and prevalent INP types is driven by the abundance of biogenic aerosol.
Tanel Voormansik, Roberto Cremonini, Piia Post, and Dmitri Moisseev
Hydrol. Earth Syst. Sci., 25, 1245–1258, https://doi.org/10.5194/hess-25-1245-2021, https://doi.org/10.5194/hess-25-1245-2021, 2021
Short summary
Short summary
A long set of operational polarimetric weather radar rainfall accumulations from Estonia and Italy are generated and investigated. Results show that the combined product of specific differential phase and horizontal reflectivity yields the best results when compared to rain gauge measurements. The specific differential-phase-based product overestimates weak precipitation, and the horizontal-reflectivity-based product underestimates heavy rainfall in all analysed accumulation periods.
Piia Post and Margit Aun
Adv. Sci. Res., 17, 219–225, https://doi.org/10.5194/asr-17-219-2020, https://doi.org/10.5194/asr-17-219-2020, 2020
Short summary
Short summary
The satellite-based fractional cloud cover and cloud top height from CLARA-A2 data record has been used to analyse trends in the Baltic Sea region, 1982–2015. Cloud observations from the Tartu-Tõravere meteorological station were used as reference data for the same period. A downward trend in fractional cloud cover in March over the 1982–2015 period was found. For cloud top heights summer and spring regional averages showed opposite signs of the trend: for June positive and for March negative.
Haoran Li, Jussi Tiira, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Chem. Phys., 20, 9547–9562, https://doi.org/10.5194/acp-20-9547-2020, https://doi.org/10.5194/acp-20-9547-2020, 2020
Short summary
Short summary
A method for classifying rimed and unrimed snow based on X- and Ka-band Doppler radar measurements is developed and applied to synergetic radar observations collected during BAECC 2014. The results show that the radar-observed melting layer properties are highly related to the precipitation intensity. The previously reported bright band sagging is mainly connected to the increase in precipitation intensity, while riming plays a secondary role.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Jussi Tiira and Dmitri Moisseev
Atmos. Meas. Tech., 13, 1227–1241, https://doi.org/10.5194/amt-13-1227-2020, https://doi.org/10.5194/amt-13-1227-2020, 2020
Short summary
Short summary
Modern weather radars are sensitive for properties of precipitating snow particles, such as their sizes, shapes and number concentration. Vertical profiles of such radar measurements can be used for studying the processes through which snow is formed. We created a profile classification method for this purpose, and we show how it can be used for automatic identification of snow growth processes. Being able to identify the processes is expected to improve radar-based precipitation estimation.
Shannon L. Mason, Robin J. Hogan, Christopher D. Westbrook, Stefan Kneifel, Dmitri Moisseev, and Leonie von Terzi
Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019, https://doi.org/10.5194/amt-12-4993-2019, 2019
Short summary
Short summary
The mass contents of snowflakes are critical to remotely sensed estimates of snowfall. The signatures of snow measured at three radar frequencies can distinguish fluffy, fractal snowflakes from dense and more homogeneous rimed snow. However, we show that the shape of the particle size spectrum also has a significant impact on triple-frequency radar signatures and must be accounted for when making triple-frequency radar estimates of snow that include variations in particle structure and density.
Gwo-Jong Huang, Viswanathan N. Bringi, Andrew J. Newman, Gyuwon Lee, Dmitri Moisseev, and Branislav M. Notaroš
Atmos. Meas. Tech., 12, 1409–1427, https://doi.org/10.5194/amt-12-1409-2019, https://doi.org/10.5194/amt-12-1409-2019, 2019
Short summary
Short summary
This paper proposes a method for snow rate (SR) estimation using observations collected by NASA dual-frequency dual-polarized (D3R) radar during the GPM Cold-season Precipitation Experiment (GCPEx). The new method utilizes dual-wavelength radar reflectivity ratio (DWR) and 2-D-video disdrometer (2DVD) measurements to improve SR estimation accuracy. It is validated by comparing the D3R radar-retrieved SR with accumulated SR directly measured by a Pluvio gauge for an entire GCPEx synoptic event.
Jussi Leinonen, Matthew D. Lebsock, Simone Tanelli, Ousmane O. Sy, Brenda Dolan, Randy J. Chase, Joseph A. Finlon, Annakaisa von Lerber, and Dmitri Moisseev
Atmos. Meas. Tech., 11, 5471–5488, https://doi.org/10.5194/amt-11-5471-2018, https://doi.org/10.5194/amt-11-5471-2018, 2018
Short summary
Short summary
We developed a technique for inferring the physical properties (amount, size and density) of falling snow from radar observations made using multiple different frequencies. We tested this method using measurements from airborne radar and compared the results to direct measurements from another aircraft, as well as ground-based radar. The results demonstrate that multifrequency radars have significant advantages over those with a single frequency in determining the snow size and density.
Marta Tecla Falconi, Annakaisa von Lerber, Davide Ori, Frank Silvio Marzano, and Dmitri Moisseev
Atmos. Meas. Tech., 11, 3059–3079, https://doi.org/10.5194/amt-11-3059-2018, https://doi.org/10.5194/amt-11-3059-2018, 2018
Short summary
Short summary
Estimating snowfall intensity from satellite and ground-based radar missions requires accurate retrieval models. Reflectivity–snowfall relations are obtained at cm and mm wavelengths using data recorded during the Biogenic Aerosols Effects on Clouds and Climate (BAECC) campaign in Finland. Lightly, moderately and heavily rimed snow cases are identified. Numerical simulations are performed to relate snowflake microphysical (video disdrometer) and multifrequency backscattering properties (radars).
Graziella Devoli, Davide Tiranti, Roberto Cremonini, Monica Sund, and Søren Boje
Nat. Hazards Earth Syst. Sci., 18, 1351–1372, https://doi.org/10.5194/nhess-18-1351-2018, https://doi.org/10.5194/nhess-18-1351-2018, 2018
Liisi Jakobson, Erko Jakobson, Piia Post, and Jaak Jaagus
Earth Syst. Dynam., 8, 1019–1030, https://doi.org/10.5194/esd-8-1019-2017, https://doi.org/10.5194/esd-8-1019-2017, 2017
Short summary
Short summary
Relationships between meteorological parameters between Arctic and the Baltic Sea regions were investigated using NCEP-CFSR reanalysis for 1979–2015. The Greenland and Baffin Bay regions climate have the most significant teleconnections with the Baltic Sea region temperature, specific humidity and wind speed. These relationships can be explained by the AO/NAO index variability only in winter. The results are valuable for selecting Arctic regions with the largest effect on the Baltic Sea region.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Mattia Vaccarono, Renzo Bechini, Chandra V. Chandrasekar, Roberto Cremonini, and Claudio Cassardo
Atmos. Meas. Tech., 9, 5367–5383, https://doi.org/10.5194/amt-9-5367-2016, https://doi.org/10.5194/amt-9-5367-2016, 2016
Short summary
Short summary
The data quality of radars must be ensured and continuously monitored. The aim of this paper is to provide an integrated approach able to monitor the calibration of operational dual-polarization radars. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. This is considered adequate to automatically detect any unexpected change in the radar system requiring further investigations.
Roberto Cremonini, Dmitri Moisseev, and Venkatachalam Chandrasekar
Atmos. Meas. Tech., 9, 5063–5075, https://doi.org/10.5194/amt-9-5063-2016, https://doi.org/10.5194/amt-9-5063-2016, 2016
Short summary
Short summary
Although high-spatial-resolution weather radar observations are of primary relevance for urban hydrology, weather radar siting and characterization are challenging in an urban environment. Buildings, masts and trees cause partial beam blockages and clutter that seriously affect the observations. For the first time, this paper investigates the benefits of using airborne laser scanner (ALS) data for quantitative estimations of partial beam blockages in an urban environment.
Jussi Tiira, Dmitri N. Moisseev, Annakaisa von Lerber, Davide Ori, Ali Tokay, Larry F. Bliven, and Walter Petersen
Atmos. Meas. Tech., 9, 4825–4841, https://doi.org/10.5194/amt-9-4825-2016, https://doi.org/10.5194/amt-9-4825-2016, 2016
Short summary
Short summary
In this study winter measurements collected in Southern Finland are used to document microphysical properties of falling snow. It is shown that a new video imager can be used for such studies. Snow properties do vary between winters.
A. Lehmann and P. Post
Adv. Sci. Res., 12, 219–225, https://doi.org/10.5194/asr-12-219-2015, https://doi.org/10.5194/asr-12-219-2015, 2015
A. Hirsikko, E. J. O'Connor, M. Komppula, K. Korhonen, A. Pfüller, E. Giannakaki, C. R. Wood, M. Bauer-Pfundstein, A. Poikonen, T. Karppinen, H. Lonka, M. Kurri, J. Heinonen, D. Moisseev, E. Asmi, V. Aaltonen, A. Nordbo, E. Rodriguez, H. Lihavainen, A. Laaksonen, K. E. J. Lehtinen, T. Laurila, T. Petäjä, M. Kulmala, and Y. Viisanen
Atmos. Meas. Tech., 7, 1351–1375, https://doi.org/10.5194/amt-7-1351-2014, https://doi.org/10.5194/amt-7-1351-2014, 2014
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
An improved geolocation methodology for spaceborne radar and lidar systems
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Unfiltering of the EarthCARE Broadband Radiometer (BBR) observations: the BM-RAD product
Variance estimations in the presence of intermittent interference and their applications to incoherent scatter radar signal processing
A clustering-based method for identifying and tracking squall lines
A multi-instrument fuzzy logic boundary-layer-top detection algorithm
Aeolus Lidar Surface Returns (LSR) at 355 nm as a new Aeolus L2A Phase-F product
Sensitivity of thermodynamic profiles retrieved from ground-based microwave and infrared observations to additional input data from active remote sensing instruments and numerical weather prediction models
Scale separation for gravity wave analysis from 3D temperature observations in the mesosphere and lower thermosphere (MLT) region
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation
Retrieval of top-of-atmosphere fluxes from combined EarthCARE LiDAR, imager and broadband radiometer observations: the BMA-FLX product
Dual adaptive differential threshold method for automated detection of faint and strong echo features in radar observations of winter storms
Noise filtering options for conically scanning Doppler lidar measurements with low pulse accumulation
Comparative experimental validation of microwave hyperspectral atmospheric soundings in clear-sky conditions
Measuring rainfall using microwave links: the influence of temporal sampling
Drone-based photogrammetry combined with deep learning to estimate hail size distributions and melting of hail on the ground
Determination of low-level temperature profiles from microwave radiometer observations during rain
The High lAtitude sNowfall Detection and Estimation aLgorithm for ATMS (HANDEL-ATMS): a new algorithm for snowfall retrieval at high latitudes
Next-generation radiance unfiltering process for the Clouds and the Earth's Radiant Energy System instrument
Improved rain event detection in commercial microwave link time series via combination with MSG SEVIRI data
A directional surface reflectance climatology determined from TROPOMI observations
Investigation of gravity waves using measurements from a sodium temperature/wind lidar operated in multi-direction mode
Sampling the diurnal and annual cycles of the Earth’s energy imbalance with constellations of satellite-borne radiometers
An improved BRDF hotspot model and its use in VLIDORT for studying the impact of atmospheric scattering on hotspot directional signatures in the atmosphere
A multi-decadal time series of upper stratospheric temperature profiles from Odin-OSIRIS limb-scattered spectra
Observations of Tall-Building Wakes Using a Scanning Doppler Lidar
CALOTRITON: a convective boundary layer height estimation algorithm from ultra-high-frequency (UHF) wind profiler data
Enhancing consistency of microphysical properties of precipitation across the melting layer in dual-frequency precipitation radar data
Analysis of the measurement uncertainty for a 3D wind-LiDAR
Profiling the molecular destruction rates of temperature and humidity as well as the turbulent kinetic energy dissipation in the convective boundary layer
Forward operator for polarimetric radio occultation measurements
Assessing atmospheric gravity wave spectra in the presence of observational gaps
Joint 1DVar retrievals of tropospheric temperature and water vapor from Global Navigation Satellite System radio occultation (GNSS-RO) and microwave radiometer observations
Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar
Radar and environment-based hail damage estimates using machine learning
A new power-law model for μ–Λ relationships in convective and stratiform rainfall
Suppression of precipitation bias in wind velocities from continuous-wave Doppler lidars
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024, https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
Short summary
Continuous profile observations of temperature and humidity in the lowest part of the atmosphere are essential for the evaluation of numerical weather prediction models and data assimilation for better weather forecasts. Such profiles can be retrieved from passive ground-based remote sensing instruments like infrared spectrometers and microwave radiometers. In this study, we describe three recent modifications to the retrieval framework TROPoe for improved temperature and humidity profiles.
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024, https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Short summary
The paper presents a comprehensive approach to improve the geolocation accuracy of spaceborne radar and lidar systems, crucial for the successful interpretation of data from the upcoming EarthCARE mission. The paper details the technical background of the presented methods and various examples of geolocation analyses, including a short period of CloudSat observations when the star tracker was not operating properly and lifetime statistics from the CloudSat and CALIPSO missions.
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024, https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
Short summary
We developed retrievals of integrated water vapour (IWV), temperature profiles, and humidity profiles from ground-based passive microwave remote sensing measurements gathered during the MOSAiC expedition. We demonstrate and quantify the benefit of combining low- and high-frequency microwave radiometers to improve humidity profiling and IWV estimates by comparing the retrieved quantities to single-instrument retrievals and reference datasets (radiosondes).
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024, https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Short summary
The amount of sunlight reflected by the Earth’s surface (albedo) is vital for the Earth's radiative system. While satellite instruments offer detailed spatial and temporal albedo maps, they only cover seven wavelength bands. We generate albedo maps that fully span the visible and near-infrared range using a machine learning algorithm. These maps reveal how the reflectivity of different land surfaces varies throughout the year. Our dataset enhances the understanding of the Earth's energy balance.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024, https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Short summary
This study evaluates the use of background surface reflectance (BSR) derived from a semi-empirical bidirectional reflectance distribution function (BRDF) model based on GEMS satellite images. Analysis shows that BSR provides improved accuracy and stability compared to Lambertian-equivalent reflectivity (LER). These results indicate that BSR can significantly enhance climate analysis and air quality monitoring, making it a promising tool for accurate environmental satellite applications.
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024, https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Short summary
A method for determining drop size distributions (DSDs) for rain using radar measurements from two frequencies at two polarizations is presented. Following some preprocessing and quality control, radar measurements are incorporated into a model that uses swarm intelligence to seek the most suitable DSD to produce the input measurements.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024, https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Short summary
We analyze simulated polarization observations over snow to investigate the capabilities of remote sensing to determine surface and atmospheric properties in snow-covered regions. Polarization measurements are demonstrated to aid in the determination of snow grain shape, ice crystal roughness, and the vertical distribution of impurities in the snow–atmosphere system, data that are critical for estimating snow albedo for use in climate models.
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024, https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024, https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Short summary
We study how the spectral characteristics of a solid-state laser in an atmospheric temperature profiling lidar using the Raman technique impact the temperature retrieval accuracy. We find that the spectral widening, with respect to a seeded laser, has virtually no impact, while crystal-rod temperature variations in the laser must be kept within a range of 1 K for the uncertainty in the atmospheric temperature below 1 K. The study is carried out through spectroscopy simulations.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024, https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary
Short summary
Non-linearity (NL) correction is a critical procedure to guarantee that the calibration accuracy of a spaceborne sensor approaches a reasonable level. Different from the classical method, a new NL correction method for a spaceborne Fourier transform spectrometer is proposed. To overcome the inaccurate linear coefficient from two-point calibration influencing NL correction, an iteration algorithm is established that is suitable for NL correction of both infrared and microwave sensors.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Almudena Velázquez Blázquez, Edward Baudrez, Nicolas Clerbaux, and Carlos Domenech
Atmos. Meas. Tech., 17, 4245–4256, https://doi.org/10.5194/amt-17-4245-2024, https://doi.org/10.5194/amt-17-4245-2024, 2024
Short summary
Short summary
The Broadband Radiometer measures shortwave and total-wave radiances filtered by the spectral response of the instrument. To obtain unfiltered solar and thermal radiances, the effect of the spectral response needs to be corrected for, done within the BM-RAD processor. Errors in the unfiltering are propagated into fluxes; thus, accurate unfiltering is required for their proper estimation (within BMA-FLX). Unfiltering errors are estimated to be <0.5 % for the shortwave and <0.1 % for the longwave.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Zhao Shi, Yuxiang Wen, and Jianxin He
Atmos. Meas. Tech., 17, 4121–4135, https://doi.org/10.5194/amt-17-4121-2024, https://doi.org/10.5194/amt-17-4121-2024, 2024
Short summary
Short summary
The squall line is a type of convective system. Squall lines are often associated with damaging weather, so identifying and tracking squall lines plays an important role in early meteorological disaster warnings. A clustering-based method is proposed in this article. It can identify the squall lines within the radar scanning range with an accuracy rate of 95.93 %. It can also provide the three-dimensional structure and movement tracking results for each squall line.
Elizabeth N. Smith and Jacob T. Carlin
Atmos. Meas. Tech., 17, 4087–4107, https://doi.org/10.5194/amt-17-4087-2024, https://doi.org/10.5194/amt-17-4087-2024, 2024
Short summary
Short summary
Boundary-layer height observations remain sparse in time and space. In this study we create a new fuzzy logic method for synergistically combining boundary-layer height estimates from a suite of instruments. These estimates generally compare well to those from radiosondes; plus, the approach offers near-continuous estimates through the entire diurnal cycle. Suspected reasons for discrepancies are discussed. The code for the newly presented fuzzy logic method is provided for the community to use.
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1926, https://doi.org/10.5194/egusphere-2024-1926, 2024
Short summary
Short summary
The Atmospheric Laser Doppler Instrument (ALADIN) on the Aeolus satellite was the first of its kind to measure high-resolution vertical profiles of aerosols and cloud properties from space. We present an algorithm, producing Aeolus lidar surface returns (LSR) containing useful information for measuring UV reflectivity. Aeolus LSR matched well with existing UV reflectivity data from other satellites like GOME-2 and TROPOMI and demonstrated excellent sensitivity to modelled snow cover.
Laura Bianco, Bianca Adler, Ludovic Bariteau, Irina V. Djalalova, Timothy Myers, Sergio Pezoa, David D. Turner, and James M. Wilczak
Atmos. Meas. Tech., 17, 3933–3948, https://doi.org/10.5194/amt-17-3933-2024, https://doi.org/10.5194/amt-17-3933-2024, 2024
Short summary
Short summary
The Tropospheric Remotely Observed Profiling via Optimal Estimation physical retrieval is used to retrieve temperature and humidity profiles from various combinations of passive and active remote sensing instruments, surface platforms, and numerical weather prediction models. The retrieved profiles are assessed against collocated radiosonde in non-cloudy conditions to assess the sensitivity of the retrievals to different input combinations. Case studies with cloudy conditions are also inspected.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024, https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
Short summary
This research examines the characteristics of low-level GNSS radio occultation (RO) refractivity bias over ocean and land and its dependency on the RO retrieval uncertainty, atmospheric temperature, and moisture. We propose methods for estimating the region-dependent refractivity bias. Our methods can be applied to calibrate the refractivity bias under different atmospheric conditions and thus improve the applications of the GNSS RO data in the deep troposphere.
Sanja Dmitrovic, Johnathan W. Hair, Brian L. Collister, Ewan Crosbie, Marta A. Fenn, Richard A. Ferrare, David B. Harper, Chris A. Hostetler, Yongxiang Hu, John A. Reagan, Claire E. Robinson, Shane T. Seaman, Taylor J. Shingler, Kenneth L. Thornhill, Holger Vömel, Xubin Zeng, and Armin Sorooshian
Atmos. Meas. Tech., 17, 3515–3532, https://doi.org/10.5194/amt-17-3515-2024, https://doi.org/10.5194/amt-17-3515-2024, 2024
Short summary
Short summary
This study introduces and evaluates a new ocean surface wind speed product from the NASA Langley Research Center (LARC) airborne High-Spectral-Resolution Lidar – Generation 2 (HSRL-2) during the NASA ACTIVATE mission. We show that HSRL-2 surface wind speed data are accurate when compared to ground-truth dropsonde measurements. Therefore, the HSRL-2 instrument is able obtain accurate, high-resolution surface wind speed data in airborne field campaigns.
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
EGUsphere, https://doi.org/10.5194/egusphere-2024-1539, https://doi.org/10.5194/egusphere-2024-1539, 2024
Short summary
Short summary
This paper focuses on the BMA-FLX processor, in which thermal and solar top-of-atmosphere radiative fluxes are obtained from longwave and shortwave radiances measured along-track by the EarthCARE Broadband Radiometer (BBR). The BBR measurements, at three fixed viewing angles (fore, nadir, aft) are co-registered either at the surface or at a reference level. A combined flux from the three BRR views is obtained. The algorithm has been successfully validated against test scenes.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Eileen Päschke and Carola Detring
Atmos. Meas. Tech., 17, 3187–3217, https://doi.org/10.5194/amt-17-3187-2024, https://doi.org/10.5194/amt-17-3187-2024, 2024
Short summary
Short summary
Little noise in radial velocity Doppler lidar measurements can contribute to large errors in retrieved turbulence variables. In order to distinguish between plausible and erroneous measurements we developed new filter techniques that work independently of the choice of a specific threshold for the signal-to-noise ratio. The performance of these techniques is discussed both by means of assessing the filter results and by comparing retrieved turbulence variables versus independent measurements.
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
EGUsphere, https://doi.org/10.5194/egusphere-2024-1045, https://doi.org/10.5194/egusphere-2024-1045, 2024
Short summary
Short summary
This study evaluates and compares a new microwave hyperspectrometer with an infrared hyperspectrometer for clear-sky temperature and water vapor retrievals. The analysis reveals that the information content of the infrared hyperspectrometer exceeds that of the microwave hyperspectrometer and provides higher vertical resolution in ground-based zenith measurements. Leveraging the ground-airborne synergy between the two instruments yielded optimal-sounding results.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Martin Lainer, Killian P. Brennan, Alessandro Hering, Jérôme Kopp, Samuel Monhart, Daniel Wolfensberger, and Urs Germann
Atmos. Meas. Tech., 17, 2539–2557, https://doi.org/10.5194/amt-17-2539-2024, https://doi.org/10.5194/amt-17-2539-2024, 2024
Short summary
Short summary
This study uses deep learning (the Mask R-CNN model) on drone-based photogrammetric data of hail on the ground to estimate hail size distributions (HSDs). Traditional hail sensors' limited areas complicate the full HSD retrieval. The HSD of a supercell event on 20 June 2021 is retrieved and contains > 18 000 hailstones. The HSD is compared to automatic hail sensor measurements and those of weather-radar-based MESHS. Investigations into ground hail melting are performed by five drone flights.
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-919, https://doi.org/10.5194/egusphere-2024-919, 2024
Short summary
Short summary
Microwave radiometers are usually not able to provide atmospheric quantities such as temperature profiles during rain. Here, we present a method based on a selection of specific frequencies and elevation angles from the microwave radiometer observation. A comparison with a numerical weather prediction model shows that the presented method allows to resolve temperature profiles during rain with rain rates up to 2 mm h−1 which was not possible before with state-of-the-art retrievals.
Andrea Camplani, Daniele Casella, Paolo Sanò, and Giulia Panegrossi
Atmos. Meas. Tech., 17, 2195–2217, https://doi.org/10.5194/amt-17-2195-2024, https://doi.org/10.5194/amt-17-2195-2024, 2024
Short summary
Short summary
The paper describes a new machine-learning-based snowfall retrieval algorithm for Advanced Technology Microwave Sounder observations developed to retrieve high-latitude snowfall events. The main novelty of the approach is the radiometric characterization of the background surface at the time of the overpass, which is ancillary to the retrieval process. The algorithm shows a unique capability to retrieve snowfall in the environmental conditions typical of high latitudes.
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala
Atmos. Meas. Tech., 17, 2165–2182, https://doi.org/10.5194/amt-17-2165-2024, https://doi.org/10.5194/amt-17-2165-2024, 2024
Short summary
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Lieuwe G. Tilstra, Martin de Graaf, Victor J. H. Trees, Pavel Litvinov, Oleg Dubovik, and Piet Stammes
Atmos. Meas. Tech., 17, 2235–2256, https://doi.org/10.5194/amt-17-2235-2024, https://doi.org/10.5194/amt-17-2235-2024, 2024
Short summary
Short summary
This paper introduces a new surface albedo climatology of directionally dependent Lambertian-equivalent reflectivity (DLER) observed by TROPOMI on the Sentinel-5 Precursor satellite. The database contains monthly fields of DLER for 21 wavelength bands at a relatively high spatial resolution of 0.125 by 0.125 degrees. The anisotropy of the surface reflection is handled by parameterisation of the viewing angle dependence.
Bing Cao and Alan Z. Liu
Atmos. Meas. Tech., 17, 2123–2146, https://doi.org/10.5194/amt-17-2123-2024, https://doi.org/10.5194/amt-17-2123-2024, 2024
Short summary
Short summary
A narrow-band sodium lidar measures atmospheric waves but is limited to vertical variations. We propose to utilize phase shifts among observations from different laser beams to derive horizontal wave information. Two gravity wave packets were identified by this method. Both waves were found to interact with thin evanescent layers, partially reflected, but transmitted energy to higher altitudes. The method can detect more medium-frequency gravity waves for similar lidar systems worldwide.
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
EGUsphere, https://doi.org/10.5194/egusphere-2024-356, https://doi.org/10.5194/egusphere-2024-356, 2024
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and the energy the Earth emits back to space gives rise to climate change, but measuring the small imbalance is challenging. We simulate satellites in various orbits to investigate how well they sample the imbalance, and find that the best option is to combine at least two satellites that see complementary parts of the Earth and cover the daily and annual cycles. This information is useful when planning future satellite missions.
Xiaozhen Xiong, Xu Liu, Robert Spurr, Ming Zhao, Qiguang Yang, Wan Wu, and Liqiao Lei
Atmos. Meas. Tech., 17, 1965–1978, https://doi.org/10.5194/amt-17-1965-2024, https://doi.org/10.5194/amt-17-1965-2024, 2024
Short summary
Short summary
The term “hotspot” refers to the sharp increase in reflectance occurring when incident (solar) and reflected (viewing) directions coincide in the backscatter direction. The accurate simulation of hotspot directional signatures is important for many remote sensing applications, but current models typically require large values of computations to represent the hotspot accurately. This paper provides a numerically improved hotspot BRDF model that converges much faster and is used in VLIDORT.
Daniel Zawada, Kimberlee Dubé, Taran Warnock, Adam Bourassa, Susann Tegtmeier, and Douglas Degenstein
Atmos. Meas. Tech., 17, 1995–2010, https://doi.org/10.5194/amt-17-1995-2024, https://doi.org/10.5194/amt-17-1995-2024, 2024
Short summary
Short summary
There remain large uncertainties in long-term changes of stratospheric–atmospheric temperatures. We have produced a time series of more than 20 years of satellite-based temperature measurements from the OSIRIS instrument in the upper–middle stratosphere. The dataset is publicly available and intended to be used for a better understanding of changes in stratospheric temperatures.
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
EGUsphere, https://doi.org/10.5194/egusphere-2024-937, https://doi.org/10.5194/egusphere-2024-937, 2024
Short summary
Short summary
A doppler lidar was placed in highly built-up area in London to measure wakes from tall buildings during a period of one year. We were able to detect wakes and assess their dependence on wind speed, wind direction, and atmospheric stability.
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Short summary
We present a new algorithm, CALOTRITON, for the retrieval of the convective boundary layer depth with ultra-high-frequency radar measurements. CALOTRITON is partly based on the principle that the top of the convective boundary layer is associated with an inversion and a decrease in turbulence. It is evaluated using ceilometer and radiosonde data. It is able to qualify the complexity of the vertical structure of the low troposphere and detect internal or residual layers.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-184, https://doi.org/10.5194/amt-2023-184, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Three-dimensional (3D) wind velocity measurements are of major importance for the characterization of atmospheric turbulence. This paper presents a detailed study of the measurement uncertainty of a three-beam wind-LiDAR designed for mounting on airborne platforms. Considering the geometrical constraints, the analysis provides quantitative estimates for the measurement uncertainty of all components of the 3D wind vector. As a result, we propose an optimized post-processing for error reduction.
Volker Wulfmeyer, Christoph Senff, Florian Späth, Andreas Behrendt, Diego Lange, Robert M. Banta, W. Alan Brewer, Andreas Wieser, and David D. Turner
Atmos. Meas. Tech., 17, 1175–1196, https://doi.org/10.5194/amt-17-1175-2024, https://doi.org/10.5194/amt-17-1175-2024, 2024
Short summary
Short summary
A simultaneous deployment of Doppler, temperature, and water-vapor lidar systems is used to provide profiles of molecular destruction rates and turbulent kinetic energy (TKE) dissipation in the convective boundary layer (CBL). The results can be used for the parameterization of turbulent variables, TKE budget analyses, and the verification of weather forecast and climate models.
Daisuke Hotta, Katrin Lonitz, and Sean Healy
Atmos. Meas. Tech., 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024, https://doi.org/10.5194/amt-17-1075-2024, 2024
Short summary
Short summary
Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) is a new type of GNSS observations that can detect heavy precipitation along the ray path between the emitter and receiver satellites. As a first step towards using these observations in numerical weather prediction (NWP), we developed a computer code that simulates GNSS-PRO observations from forecast fields produced by an NWP model. The quality of the developed simulator is evaluated with a number of case studies.
Mohamed Mossad, Irina Strelnikova, Robin Wing, and Gerd Baumgarten
Atmos. Meas. Tech., 17, 783–799, https://doi.org/10.5194/amt-17-783-2024, https://doi.org/10.5194/amt-17-783-2024, 2024
Short summary
Short summary
This numerical study addresses observational gaps' impact on atmospheric gravity wave spectra. Three methods, fast Fourier transform (FFT), generalized Lomb–Scargle periodogram (GLS), and Haar structure function (HSF), were tested on synthetic data. HSF is best for spectra with negative slopes. GLS excels for flat and positive slopes and identifying dominant frequencies. Accurately estimating these aspects is crucial for understanding gravity wave dynamics and energy transfer in the atmosphere.
Kuo-Nung Wang, Chi O. Ao, Mary G. Morris, George A. Hajj, Marcin J. Kurowski, Francis J. Turk, and Angelyn W. Moore
Atmos. Meas. Tech., 17, 583–599, https://doi.org/10.5194/amt-17-583-2024, https://doi.org/10.5194/amt-17-583-2024, 2024
Short summary
Short summary
In this article, we described a joint retrieval approach combining two techniques, RO and MWR, to obtain high vertical resolution and solve for temperature and moisture independently. The results show that the complicated structure in the lower troposphere can be better resolved with much smaller biases, and the RO+MWR combination is the most stable scenario in our sensitivity analysis. This approach is also applied to real data (COSMIC-2/Suomi-NPP) to show the promise of joint RO+MWR retrieval.
Filippo Emilio Scarsi, Alessandro Battaglia, Frederic Tridon, Paolo Martire, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 17, 499–514, https://doi.org/10.5194/amt-17-499-2024, https://doi.org/10.5194/amt-17-499-2024, 2024
Short summary
Short summary
The WIVERN mission, one of the two candidates to be the ESA's Earth Explorer 11 mission, aims at providing measurements of horizontal winds in cloud and precipitation systems through a conically scanning W-band Doppler radar. This work discusses four methods that can be used to characterize and correct the Doppler velocity error induced by the antenna mispointing. The proposed methodologies can be extended to other Doppler concepts featuring conically scanning or slant viewing Doppler systems.
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024, https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Short summary
The paper addresses the crucial topic of hail damage quantification using radar observations. We propose a new radar-derived hail product that utilizes a large dataset of insurance hail damage claims and radar observations. A deep neural network was employed, trained with local meteorological variables and the radar observations, to better quantify hail damage. Key meteorological variables were identified to have the most predictive capability in this regard.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024, https://doi.org/10.5194/amt-17-235-2024, 2024
Short summary
Short summary
A common method to retrieve important information about the microphysical structure of rain (DSD retrievals) requires a constrained relationship between the drop size distribution parameters. The most widely accepted empirical relationship is between μ and Λ. The relationship shows variability across the different types of rainfall (convective or stratiform). The new proposed power-law model to represent the μ–Λ relation provides a better physical interpretation of the relationship coefficients.
Liqin Jin, Jakob Mann, Nikolas Angelou, and Mikael Sjöholm
Atmos. Meas. Tech., 16, 6007–6023, https://doi.org/10.5194/amt-16-6007-2023, https://doi.org/10.5194/amt-16-6007-2023, 2023
Short summary
Short summary
By sampling the spectra from continuous-wave Doppler lidars very fast, the rain-induced Doppler signal can be suppressed and the bias in the wind velocity estimation can be reduced. The method normalizes 3 kHz spectra by their peak values before averaging them down to 50 Hz. Over 3 h, we observe a significant reduction in the bias of the lidar data relative to the reference sonic data when the largest lidar focus distance is used. The more it rains, the more the bias is reduced.
Cited articles
Allen, R. J. and De Gaetano, A. T.: Considerations for the use of radar-derived precipitation estimates in determining return intervals for extreme areal precipitation amounts, J. Hydrol., 315, 203–219, https://doi.org/10.1016/j.jhydrol.2005.03.028, 2005. a
Brandes, E. A., Ryzhkov, A. V., and Zrnić Dušan S.: An evaluation of radar rainfall estimates from specific differential phase, J. Atmos. Ocean. Tech., 18, 363–375, https://doi.org/10.1175/1520-0426(2001)018<0363:AEORRE>2.0.CO;2, 2001. a
Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather Radar, Cambridge University Press, Cambridge, 636 pp., ISBN 9780511541094, 2001. a
Buishand, T. A.: Extreme rainfall estimation by combining data from several sites, Hydrolog. Sci. J., 36, 345–365, https://doi.org/10.1080/02626669109492519, 1991. a
Cremonini, R. and Bechini, R.: Heavy rainfall monitoring by Polarimetric C-band weather radars, Water, 2, 838–848, https://doi.org/10.3390/w2040838, 2010. a
Cremonini, R. and Tiranti, D.: The weather radar observations applied to shallow landslides prediction: A case study from North-western Italy, Front. Earth Sci., 6, 134, https://doi.org/10.3389/feart.2018.00134, 2018. a
Cressie, N. A.: Statistics for spatial data, Wiley, New York, 900 pp., ISBN 9780471002550, 1993. a
Deidda, R., Hellies, M., and Langousis, A.: A critical analysis of the shortcomings in spatial frequency analysis of rainfall extremes based on homogeneous regions and a comparison with a hierarchical boundaryless approach, Stoch. Env. Res. Risk A., 35, 2605–2628, https://doi.org/10.1007/s00477-021-02008-x, 2021. a
Delrieu, G., Andrieu, H., and Creutin, J. D.: Quantification of path-integrated attenuation for X- and C-band weather radar systems operating in Mediterranean heavy rainfall, J. Appl. Meteorol., 39, 840–850, https://doi.org/10.1175/1520-0450(2000)039<0840:qopiaf>2.0.co;2, 2000. a
Devoli, G., Tiranti, D., Cremonini, R., Sund, M., and Boje, S.: Comparison of landslide forecasting services in Piedmont (Italy) and Norway, illustrated by events in late spring 2013, Nat. Hazards Earth Syst. Sci., 18, 1351–1372, https://doi.org/10.5194/nhess-18-1351-2018, 2018. a
Dzotsi, K. A., Matyas, C. J., Jones, J. W., Baigorria, G., and Hoogenboom, G.: Understanding high resolution space-time variability of rainfall in southwest Georgia, United States, Int. J. Climatol., 34, 3188–3203, https://doi.org/10.1002/joc.3904, 2013. a
Fabry, F., Meunier, V., Treserras, B. P., Cournoyer, A., and Nelson, B.: On the Climatological Use of Radar Data Mosaics: Possibilities and Challenges, B. Am. Meteorol. Soc., 98, 2135–2148, https://doi.org/10.1175/BAMS-D-15-00256.1, 2017. a
Fairman Jr., J. G., Schultz, D. M., Kirshbaum, D. J., Gray, S. L., and Barrett, A. I.: A radar-based rainfall climatology of Great Britain and Ireland, Weather, 70, 153–158, https://doi.org/10.1002/wea.2486, 2015. a
Frederick, R. H., Myers, V. A., and Auciello, E. P.: Storm depth-area relations from digitized Radar Returns, Water Resour. Res., 13, 675–679, https://doi.org/10.1029/wr013i003p00675, 1977. a
Früh, B., Feldmann, H., Panitz, H.-J., Schädler, G., Jacob, D., Lorenz, P., and Keuler, K.: Determination of precipitation return values in complex terrain and their evaluation, J. Climate, 23, 2257–2274, https://doi.org/10.1175/2009jcli2685.1, 2010. a
Giangrande, S. E., McGraw, R., and Lei, L.: An application of linear programming to polarimetric radar differential phase processing, J. Atmos. Ocean. Tech., 30, 1716–1729, https://doi.org/10.1175/jtech-d-12-00147.1, 2013. a, b
Gilleland, E. and Katz, R. W.: ExtRemes 2.0: An Extreme Value Analysis Package in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08, 2016. a
Gorgucci, E., Scarchilli, G., and Chandrasekar, V.: Calibration of radars using polarimetric techniques, IEEE T. Geosci. Remote, 30, 853–858, https://doi.org/10.1109/36.175319, 1992. a
Goudenhoofdt, E. and Delobbe, L.: Evaluation of radar-gauge merging methods for quantitative precipitation estimates, Hydrol. Earth Syst. Sci., 13, 195–203, https://doi.org/10.5194/hess-13-195-2009, 2009. a, b
Gourley, J. J., Illingworth, A. J., and Tabary, P.: Absolute calibration of radar reflectivity using redundancy of the polarization observations and implied constraints on drop shapes, J. Atmos. Ocean. Tech., 26, 689–703, https://doi.org/10.1175/2008jtecha1152.1, 2009. a
IPCC: Summary for Policymakers, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 3−-32, https://doi.org/10.1017/9781009157896.001, 2021. a
Jenkinson, A. F.: The frequency distribution of the annual maximum (or minimum) values of meteorological elements, Q. J. Roy. Meteor. Soc., 81, 158–171, https://doi.org/10.1002/qj.49708134804, 1955. a
Joss, J. and Waldvogel, A.: A method to improve the accuracy of radar-measured amounts of precipitation, in: Proceedings of 14th Conference of Radar Meteorology, Tucson, AZ, USA, 17–20 November 1970, American Meteorological Society, 237–238, 1970. a
Katz, R. W., Parlange, M. B., and Naveau, P.: Statistics of extremes in hydrology, Adv. Water Resour., 25, 1287–1304, https://doi.org/10.1016/s0309-1708(02)00056-8, 2002. a, b
Keupp, L., Winterrath, T., and Hollmann, R.: Use of Weather Radar Data for Climate Data Records in WMO Regions IV and VI, Technical Report, WMO CCl TT-URSDCM, WMO, Geneva, Switzerland, https://library.wmo.int/doc_num.php?explnum_id=6260 (last access: 11 June 2023), 2017. a
Kumjian, M. R., Lebo, Z. J., and Ward, A. M.: Storms producing large accumulations of small hail, J. Appl. Meteorol. Clim., 58, 341–364, https://doi.org/10.1175/jamc-d-18-0073.1, 2019. a
Lanza, L. G., Vuerich, E., and Gnecco, I.: Analysis of highly accurate rain intensity measurements from a field test site, Adv. Geosci., 25, 37–44, https://doi.org/10.5194/adgeo-25-37-2010, 2010. a
Lazoglou, G., Anagnostopoulou, C., Tolika, K., and Kolyva-Machera, F.: A review of statistical methods to analyze extreme precipitation and temperature events in the Mediterranean region, Theor. Appl. Climatol., 136, 99–117, https://doi.org/10.1007/s00704-018-2467-8, 2018. a, b
Lutz, J., Grinde, L., and Dyrrdal, A. V.: Estimating rainfall design values for the city of Oslo, Norway–comparison of methods and quantification of uncertainty, Water, 12, 1735, https://doi.org/10.3390/w12061735, 2020. a
Marra, F. and Morin, E.: Use of radar QPE for the derivation of intensity–duration–frequency curves in a range of climatic regimes, J. Hydrol., 531, 427–440, https://doi.org/10.1016/j.jhydrol.2015.08.064, 2015. a, b, c
Marra, F., Morin, E., Peleg, N., Mei, Y., and Anagnostou, E. N.: Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean, Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, 2017. a
Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., Bárdossy, A., and Morin, E.: Precipitation frequency analysis from remotely sensed datasets: A focused review, J. Hydrol., 574, 699–705, https://doi.org/10.1016/j.jhydrol.2019.04.081, 2019. a
Marra, F., Armon, M., and Morin, E.: Coastal and orographic effects on extreme precipitation revealed by weather radar observations, Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, 2022. a, b
Mazzoglio, P., Butera, I., Alvioli, M., and Claps, P.: The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy, Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022, 2022. a
Moisseev, D., Keränen, R., Puhakka, P., Salmivaara, J., and Leskinen, M.: Analysis of dual-polarization antenna performance and its effect on QPE, 6th European Conference on Radar in Meteorology and Hydrology, Sibiu, Romania, 6–10 September 2010, National Meteorological Administration of Romania, https://www.vaisala.com/sites/default/files/documents/05_ERAD2010_0247_extended.pdf (last access: 11 June 2023), 2010. a
Naimi, B., Skidmore, A. K., Groen, T. A., and Hamm, N. A.: Spatial autocorrelation in predictors reduces the impact of positional uncertainty in occurrence data on species distribution modelling, J. Biogeogr., 38, 1497–1509, https://doi.org/10.1111/j.1365-2699.2011.02523.x, 2011. a
Olsson, J., Dyrrdal, A. V., Médus, E., Södling, J., Aņiskeviča, S., Arnbjerg-Nielsen, K., Førland, E., Mačiulytė, V., Mäkelä, A., Post, P., Thorndahl, S. L., and Wern, L.: Sub-daily rainfall extremes in the Nordic–baltic region, Hydrol. Res., 53, 807–824, https://doi.org/10.2166/nh.2022.119, 2022. a
Overeem, A., Buishand, A., and Holleman, I.: Rainfall depth-duration-frequency curves and their uncertainties, J. Hydrol., 348, 124–134, https://doi.org/10.1016/j.jhydrol.2007.09.044, 2008. a, b
Overeem, A., Buishand, T. A., and Holleman, I.: Extreme rainfall analysis and estimation of depth-duration-frequency curves using weather radar, Water Resour. Res., 45, W10424, https://doi.org/10.1029/2009wr007869, 2009a. a, b, c, d
Overeem, A., Holleman, I., and Buishand, A.: Derivation of a 10-year radar-based climatology of rainfall, J. Appl. Meteorol. Clim., 48, 1448–1463, https://doi.org/10.1175/2009jamc1954.1, 2009b. a, b, c
Overeem, A., Buishand, T. A., Holleman, I., and Uijlenhoet, R.: Extreme value modeling of areal rainfall from weather radar, Water Resour. Res., 46, W09514, https://doi.org/10.1029/2009wr008517, 2010. a, b, c, d
Panziera, L., Gabella, M., Germann, U., and Martius, O.: A 12-year radar-based climatology of daily and sub-daily extreme precipitation over the Swiss alps, Int. J. Climatol., 38, 3749–3769, https://doi.org/10.1002/joc.5528, 2018. a, b
Papalexiou, S. M. and Koutsoyiannis, D.: Battle of Extreme Value Distributions: A global survey on Extreme Daily rainfall, Water Resour. Res., 49, 187–201, https://doi.org/10.1029/2012wr012557, 2013. a, b, c
Paulitsch, H., Teschl, F., and Randeu, W. L.: Dual-polarization C-band weather radar algorithms for rain rate estimation and hydrometeor classification in an alpine region, Adv. Geosci., 20, 3–8, https://doi.org/10.5194/adgeo-20-3-2009, 2009. a
Pavan, V., Antolini, G., Barbiero, R., Berni, N., Brunier, F., Cacciamani, C., Cagnati, A., Cazzuli, O., Cicogna, A., De Luigi, C., Di Carlo, E., Francioni, M., Maraldo, L., Marigo, G., Micheletti, S., Onorato, L., Panettieri, E., Pellegrini, U., Pelosini, R., Piccinini, D., Ratto, S., Ronchi, C., Rusca, L., Sofia, S., Stelluti, M., Tomozeiu, R., and Torrigiani Malaspina, T.: High resolution climate precipitation analysis for North-central Italy, 1961–2015, Clim. Dynam., 52, 3435–3453, https://doi.org/10.1007/s00382-018-4337-6, 2018. a, b
Ragulina, G. and Reitan, T.: Generalized extreme value shape parameter and its nature for extreme precipitation using long time series and the bayesian approach, Hydrolog. Sci. J., 62, 863–879, https://doi.org/10.1080/02626667.2016.1260134, 2017. a
Reimel, K. J. and Kumjian, M.: Evaluation of KDP estimation algorithm performance in rain using a known-truth framework, J. Atmos. Ocean. Tech., 38, 587–605, https://doi.org/10.1175/jtech-d-20-0060.1, 2021. a, b
Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., Heinselman, P. L., Giangrande, S. E., and Zrnic, D. S.: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification, B. Am. Meteorol. Soc., 86, 809–824, 2005. a
Ryzhkov, A. V., Kumjian, M. R., Ganson, S. M., and Zhang, P.: Polarimetric radar characteristics of melting hail. part II: Practical implications, J. Appl. Meteorol. Clim., 52, 2871–2886, https://doi.org/10.1175/jamc-d-13-074.1, 2013. a
Schroeer, K., Kirchengast, G., and Sungmin, O.: Strong dependence of extreme convective precipitation intensities on gauge network density, Geophys. Res. Lett., 45, 8253–8263, https://doi.org/10.1029/2018gl077994, 2018. a
Tammets, T. and Jaagus, J.: Climatology of precipitation extremes in Estonia using the method of moving precipitation totals, Theor. Appl. Climatol., 111, 623–639, https://doi.org/10.1007/s00704-012-0691-1, 2012. a
van den Besselaar, E. J., Klein Tank, A. M., and Buishand, T. A.: Trends in European precipitation extremes over 1951–2010, Int. J. Climatol., 33, 2682–2689, https://doi.org/10.1002/joc.3619, 2012.
a
Viglione, A., Laio, F., and Claps, P.: A comparison of homogeneity tests for regional frequency analysis, Water Resour. Res., 43, W03428, https://doi.org/10.1029/2006wr005095, 2007. a
Voormansik, T., Müürsepp, T., and Post, P.: Climatology of convective storms in Estonia from radar data and severe convective environments, Remote Sens., 13, 2178, https://doi.org/10.3390/rs13112178, 2021b. a, b
Vuerich, E., Monesi, C., Lanza, L., Stagi, L., and Lanzinger, E.: WMO Field Intercomparison of Rainfall Intensity Gauges, Vigna di Valle, Italy, October 2007–April 2009, WMO/TD-No. 1504, IOM Report-No. 99, https://library.wmo.int/doc_num.php?explnum_id=9422 (last access: 11 June 2023), 2009. a
Vulpiani, G., Montopoli, M., Passeri, L. D., Gioia, A. G., Giordano, P., and Marzano, F. S.: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas, J. Appl. Meteorol. Clim., 51, 405–425, https://doi.org/10.1175/jamc-d-10-05024.1, 2012. a
Wang, Y. and Chandrasekar, V.: Algorithm for estimation of the specific differential phase, J. Atmos. Ocean. Tech., 26, 2565–2578, https://doi.org/10.1175/2009jtecha1358.1, 2009. a
Short summary
Extreme rainfall for a specific location is commonly evaluated when designing stormwater management systems. This study investigates the use of quantitative precipitation estimations (QPEs) based on polarimetric weather radar data, without rain gauge corrections, to estimate 1 h rainfall total maxima in Italy and Estonia. We show that dual-polarization weather radar provides reliable QPEs and effective estimations of return periods for extreme rainfall in climatologically homogeneous regions.
Extreme rainfall for a specific location is commonly evaluated when designing stormwater...