Articles | Volume 16, issue 12
https://doi.org/10.5194/amt-16-3141-2023
https://doi.org/10.5194/amt-16-3141-2023
Research article
 | 
26 Jun 2023
Research article |  | 26 Jun 2023

Analysis of 2D airglow imager data with respect to dynamics using machine learning

René Sedlak, Andreas Welscher, Patrick Hannawald, Sabine Wüst, Rainer Lienhart, and Michael Bittner

Related authors

Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021,https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Intra-annual variations of spectrally resolved gravity wave activity in the upper mesosphere/lower thermosphere (UMLT) region
René Sedlak, Alexandra Zuhr, Carsten Schmidt, Sabine Wüst, Michael Bittner, Goderdzi G. Didebulidze, and Colin Price
Atmos. Meas. Tech., 13, 5117–5128, https://doi.org/10.5194/amt-13-5117-2020,https://doi.org/10.5194/amt-13-5117-2020, 2020
Short summary

Cited articles

Bai, S., Kolter, J. Z., and Koltun, V.: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling, arXiv [preprint], https://arxiv.org/abs/1803.01271 (last access: 21 June 2023), 2018.  
Chau, J. L., Urco, J. M., Avsarkisov, V., Vierinen, J. P., Latteck, R., Hall, C. M., and Tsutsumi, M.: Four-Dimensional Quantification of Kelvin-Helmholtz Instabilities in the Polar Summer Mesosphere Using Volumetric Radar Imaging, Geophys. Ress. Let., 47, e2019GL086081, https://doi.org/10.1029/2019GL086081, 2020. 
Fujiyoshi, H., Hirakawa, T., and Yamashita, T.: Deep learning-based image recognition for autonomous driving, IATSS Research, 43, 244–252, https://doi.org/10.1016/j.iatssr.2019.11.008, 2019. 
Gargett, A. E.: Velcro Measurement of Turbulence Kinetic Energy Dissipation Rate ϵ, J. Atmos. Ocean. Tech., 16, 1973–1993, 1999. 
Guo, Z.-X., Yang, J.-Y., Dunlop, M. W., Cao, J.-B., Li, L.-Y., Ma, Y.-D., Ji, K.-F., Xiong, C., Li, J., and Ding, W.-T.: Automatic classification of mesoscale auroral forms using convolutional neural networks, J. Atmos. Terr. Phys., 235, 105906, https://doi.org/10.1016/j.jastp.2022.105906, 2022. 
Download
Short summary
We show that machine learning can help in classifying images of the OH* airglow, a thin layer in the middle atmosphere (ca. 86 km height) emitting infrared radiation, in an efficient way. By doing this, dynamic episodes of strong movement in the OH* airglow caused predominantly by waves can be extracted automatically from large data sets. Within these dynamic episodes, turbulent wave breaking can also be found. We use these observations of turbulence to derive the energy released by waves.
Share