Articles | Volume 16, issue 20
https://doi.org/10.5194/amt-16-4833-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4833-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of a wind tunnel designed to investigate the response of evaporation to changes in the incoming long-wave radiation at a water surface
Michael L. Roderick
Research School of Earth Sciences, Australian National University, Canberra, 2601, Australia
Chathuranga Jayarathne
Research School of Earth Sciences, Australian National University, Canberra, 2601, Australia
Angus J. Rummery
Research School of Earth Sciences, Australian National University, Canberra, 2601, Australia
Callum J. Shakespeare
CORRESPONDING AUTHOR
Research School of Earth Sciences, Australian National University, Canberra, 2601, Australia
ARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, 2601, Australia
Related authors
Michael L. Roderick and Callum J. Shakespeare
EGUsphere, https://doi.org/10.5194/egusphere-2024-2023, https://doi.org/10.5194/egusphere-2024-2023, 2024
Short summary
Short summary
Earth scientists assume that evaporation depends on the gradient in water vapor concentration (Fick’s law) but this is only true in an isothermal system. Temperature gradients can impact evaporation via the Soret effect. Here we evaluate the relative magnitude of the Soret effect and find that it is at least two orders of magnitude smaller than classical concentration-dependent mass (‘Fickian’) diffusion. This result justifies the standard practice of assuming evaporation follows Fick’s law.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Yuting Yang, Shulei Zhang, Michael L. Roderick, Tim R. McVicar, Dawen Yang, Wenbin Liu, and Xiaoyan Li
Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020, https://doi.org/10.5194/hess-24-2921-2020, 2020
Short summary
Short summary
Many previous studies using offline drought indices report that future warming will increase worldwide drought. However, this contradicts observations/projections of vegetation greening and increased runoff. We resolved this paradox by re-calculating the same drought indices using direct climate model outputs and find no increase in future drought as the climate warms. We also find that accounting for the impact of CO2 on plant transpiration avoids the previous overestimation of drought.
Dongqin Yin and Michael L. Roderick
Hydrol. Earth Syst. Sci., 24, 381–396, https://doi.org/10.5194/hess-24-381-2020, https://doi.org/10.5194/hess-24-381-2020, 2020
Short summary
Short summary
We focus on the initial analysis of inter-annual variability in the global terrestrial water cycle, which is key to understanding hydro-climate extremes. We find that (1) the partitioning of inter-annual variability is totally different with the mean state partitioning; (2) the magnitude of covariances can be large and negative, indicating the variability in the sinks can exceed variability in the source; and (3) the partitioning is relevant to the water storage capacity and snow/ice presence.
Martin G. De Kauwe, Belinda E. Medlyn, Andrew J. Pitman, John E. Drake, Anna Ukkola, Anne Griebel, Elise Pendall, Suzanne Prober, and Michael Roderick
Biogeosciences, 16, 903–916, https://doi.org/10.5194/bg-16-903-2019, https://doi.org/10.5194/bg-16-903-2019, 2019
Short summary
Short summary
Recent experimental evidence suggests that during heat extremes, trees may reduce photosynthesis to near zero but increase transpiration. Using eddy covariance data and examining the 3 days leading up to a temperature extreme, we found evidence of reduced photosynthesis and sustained or increased latent heat fluxes at Australian wooded flux sites. However, when focusing on heatwaves, we were unable to disentangle photosynthetic decoupling from the effect of increasing vapour pressure deficit.
Dongqin Yin, Hannah Slatford, and Michael L. Roderick
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-601, https://doi.org/10.5194/hess-2018-601, 2018
Manuscript not accepted for further review
Short summary
Short summary
We focused on seeking for a decomposition approach which can produce independent decomposed components as a basis for understanding variability in hydro-climatic time series. We find that the rarely adopted two-way ANOVA model in hydro-climatic variability (rather than the traditional methods using linear trend or moving average) will produce independent components. This method is further applied to explore the variability in global precipitation and is expected to be useful for other variables.
Y. Wang, M. L. Roderick, Y. Shen, and F. Sun
Hydrol. Earth Syst. Sci., 18, 3499–3509, https://doi.org/10.5194/hess-18-3499-2014, https://doi.org/10.5194/hess-18-3499-2014, 2014
M. L. Roderick, F. Sun, W. H. Lim, and G. D. Farquhar
Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, https://doi.org/10.5194/hess-18-1575-2014, 2014
W. H. Lim and M. L. Roderick
Hydrol. Earth Syst. Sci., 18, 31–45, https://doi.org/10.5194/hess-18-31-2014, https://doi.org/10.5194/hess-18-31-2014, 2014
Michael L. Roderick and Callum J. Shakespeare
EGUsphere, https://doi.org/10.5194/egusphere-2024-2023, https://doi.org/10.5194/egusphere-2024-2023, 2024
Short summary
Short summary
Earth scientists assume that evaporation depends on the gradient in water vapor concentration (Fick’s law) but this is only true in an isothermal system. Temperature gradients can impact evaporation via the Soret effect. Here we evaluate the relative magnitude of the Soret effect and find that it is at least two orders of magnitude smaller than classical concentration-dependent mass (‘Fickian’) diffusion. This result justifies the standard practice of assuming evaporation follows Fick’s law.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Yuting Yang, Shulei Zhang, Michael L. Roderick, Tim R. McVicar, Dawen Yang, Wenbin Liu, and Xiaoyan Li
Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020, https://doi.org/10.5194/hess-24-2921-2020, 2020
Short summary
Short summary
Many previous studies using offline drought indices report that future warming will increase worldwide drought. However, this contradicts observations/projections of vegetation greening and increased runoff. We resolved this paradox by re-calculating the same drought indices using direct climate model outputs and find no increase in future drought as the climate warms. We also find that accounting for the impact of CO2 on plant transpiration avoids the previous overestimation of drought.
Dongqin Yin and Michael L. Roderick
Hydrol. Earth Syst. Sci., 24, 381–396, https://doi.org/10.5194/hess-24-381-2020, https://doi.org/10.5194/hess-24-381-2020, 2020
Short summary
Short summary
We focus on the initial analysis of inter-annual variability in the global terrestrial water cycle, which is key to understanding hydro-climate extremes. We find that (1) the partitioning of inter-annual variability is totally different with the mean state partitioning; (2) the magnitude of covariances can be large and negative, indicating the variability in the sinks can exceed variability in the source; and (3) the partitioning is relevant to the water storage capacity and snow/ice presence.
Martin G. De Kauwe, Belinda E. Medlyn, Andrew J. Pitman, John E. Drake, Anna Ukkola, Anne Griebel, Elise Pendall, Suzanne Prober, and Michael Roderick
Biogeosciences, 16, 903–916, https://doi.org/10.5194/bg-16-903-2019, https://doi.org/10.5194/bg-16-903-2019, 2019
Short summary
Short summary
Recent experimental evidence suggests that during heat extremes, trees may reduce photosynthesis to near zero but increase transpiration. Using eddy covariance data and examining the 3 days leading up to a temperature extreme, we found evidence of reduced photosynthesis and sustained or increased latent heat fluxes at Australian wooded flux sites. However, when focusing on heatwaves, we were unable to disentangle photosynthetic decoupling from the effect of increasing vapour pressure deficit.
Dongqin Yin, Hannah Slatford, and Michael L. Roderick
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-601, https://doi.org/10.5194/hess-2018-601, 2018
Manuscript not accepted for further review
Short summary
Short summary
We focused on seeking for a decomposition approach which can produce independent decomposed components as a basis for understanding variability in hydro-climatic time series. We find that the rarely adopted two-way ANOVA model in hydro-climatic variability (rather than the traditional methods using linear trend or moving average) will produce independent components. This method is further applied to explore the variability in global precipitation and is expected to be useful for other variables.
Y. Wang, M. L. Roderick, Y. Shen, and F. Sun
Hydrol. Earth Syst. Sci., 18, 3499–3509, https://doi.org/10.5194/hess-18-3499-2014, https://doi.org/10.5194/hess-18-3499-2014, 2014
M. L. Roderick, F. Sun, W. H. Lim, and G. D. Farquhar
Hydrol. Earth Syst. Sci., 18, 1575–1589, https://doi.org/10.5194/hess-18-1575-2014, https://doi.org/10.5194/hess-18-1575-2014, 2014
W. H. Lim and M. L. Roderick
Hydrol. Earth Syst. Sci., 18, 31–45, https://doi.org/10.5194/hess-18-31-2014, https://doi.org/10.5194/hess-18-31-2014, 2014
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Laboratory Measurement | Topic: Validation and Intercomparisons
High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy
3-D imaging and quantification of graupel porosity by synchrotron-based micro-tomography
B. D. Emanuelsson, W. T. Baisden, N. A. N. Bertler, E. D. Keller, and V. Gkinis
Atmos. Meas. Tech., 8, 2869–2883, https://doi.org/10.5194/amt-8-2869-2015, https://doi.org/10.5194/amt-8-2869-2015, 2015
Short summary
Short summary
Here we present an experimental setup for water stable isotopes continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (analyzer manufactured by LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. The isotopic water analyzer setup used during the 2013 RICE ice core processing campaign achieved measurements with high precision and high temporal resolution.
F. Enzmann, M. M. Miedaner, M. Kersten, N. von Blohn, K. Diehl, S. Borrmann, M. Stampanoni, M. Ammann, and T. Huthwelker
Atmos. Meas. Tech., 4, 2225–2234, https://doi.org/10.5194/amt-4-2225-2011, https://doi.org/10.5194/amt-4-2225-2011, 2011
Cited articles
Dalton, J.: Experimental essays, on the constitution of mixed gases; on the force of steam or vapour from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation; and on the expansion of gases by heat, Memoirs of the Literary and Philosophical Society of Manchester, 5, 535–602, 1802.
Greenspan, L. and Wexler, A.: An adiabatic saturation psychrometer, J. Res. Natl. Inst. Stan., 72C, 33–47, 1968.
Hale, G. M. and Querry, M. R.: Optical Constants of Water in the 200-nm to 200-µm Wavelength Region, Appl. Optics, 12, 555–563, https://doi.org/10.1364/AO.12.000555, 1973.
Horiguchi, I., Tani, H., and Sugaya, H.: The measurement of longwave radiation properties upon plastic films used in greenhouses, J. Agr. Meteorol., 38, 9–14, 1982.
Huang, A.-N., Maeda, N., Shibata, D., Fukasawa, T., Yoshida, H., Kuo, H.-P., and Fukui, K.: Influence of a laminarizer at the inlet on the classification performance of a cyclone separator, Sep. Purif. Technol., 174, 408–416, https://doi.org/10.1016/j.seppur.2016.09.053, 2017.
Huang, J.: A Simple Accurate Formula for Calculating Saturation Vapor Pressure of Water and Ice, J. Appl. Meteorol. Clim., 57, 1265–1272, https://doi.org/10.1175/JAMC-D-17-0334.1, 2018.
Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S.: Fundamentals of Heat and Mass Transfer, 6th edn., John Wiley and Sons, Hokoben, USA, ISBN 0471457280, 2007.
Irvine, W. M. and Pollack, J. B.: Infrared optical properties of water and ice spheres, Icarus, 8, 324–360, https://doi.org/10.1016/0019-1035(68)90083-3, 1968.
Koizuka, A. and Miyamoto, M.: Heat transfer from plastic film heated by thermal radiation, Heat Transfer – Asian Research, 34, 265–278, https://doi.org/10.1002/htj.20059, 2005.
Lim, W. H., Roderick, M. L., Hobbins, M. T., Wong, S. C., Groeneveld, P. J., Sun, F., and Farquhar, G. D.: The aerodynamics of pan evaporation, Agr. Forest Meteorol., 152, 31–43, 2012.
Monteith, J. L. and Unsworth, M. H.: Principles of Environmental Physics, 3rd edn., Edward Arnold, London, 419 pp., ISBN 9780125051033, 2008.
Nunez, G. A. and Sparrow, E. M.: Models and solutions for isothermal and nonisothermal evaporation from a partially filled tube, Int. J. Heat Mass Tran., 31, 461–477, https://doi.org/10.1016/0017-9310(88)90028-2, 1988.
Peixoto, J. P. and Oort, A. H.: Physics of Climate, American Institute of Physics, New York, USA, 520 pp., ISBN 0883187116, 1992.
Penman, H. L.: Natural evaporation from open water, bare soil and grass, P. Roy. Soc. Lond. A, 193, 120–145, 1948.
Pierrehumbert, R. T.: Principles of Planetary Climate, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511780783, 2010.
Priestley, C. H. B.: The limitation of temperature by evaporation in hot climates, Agr. Meteorol., 3, 241–246, 1966.
Roderick, M., Jayarathne, C., Rummery, A., and Shakespeare, C.: Evaluation of a wind tunnel designed to investigate the response of evaporation to changes in the incoming longwave radiation at a water surface (V12 (Final)), Zenodo [data set], https://doi.org/10.5281/zenodo.8381685, 2023.
Saunders, P. M.: The Temperature at the Ocean-Air Interface, J. Atmos. Sci., 24, 269–273, https://doi.org/10.1175/1520-0469(1967)024<0269:TTATOA>2.0.CO;2, 1967.
Schreier, F., Gimeno García, S., Hochstaffl, P., and Städt, S.: Py4CAtS – PYthon for Computational ATmospheric Spectroscopy, Atmosphere, 10, 262, https://doi.org/10.3390/atmos10050262, 2019.
Shakespeare, C. J. and Roderick, M. L.: The clear-sky downwelling long-wave radiation at the surface in current and future climates, Q. J. Roy. Meteor. Soc., 147, 4251–4268, https://doi.org/10.1002/qj.4176, 2021.
Sparrow, E. M. and Cess, R. D.: Radiation Heat Transfer, Brooks/Cole Publishing Company, Belmont, Ca., http://webcatplus.nii.ac.jp/webcatplus/details/book/ncid/BA26188719.html (last access: 18 October 2023), 1966.
Sparrow, E. M. and Nunez, G. A.: Experiments on isothermal and non-isothermal evaporation from partially filled, open-topped vertical tubes, Int. J. Heat Mass Tran., 31, 1345–1355, https://doi.org/10.1016/0017-9310(88)90244-X, 1988.
Thom, A. S., Thony, J. L., and Vauclin, M.: On the proper employment of evaporation pans and atmometers in estimating potential transpiration, Q. J. Roy. Meteor. Soc., 107, 711–736, 1981.
Wagner, W. and Pruß, A.: The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem. Ref. Data, 31, 387–535, https://doi.org/10.1063/1.1461829, 2002.
Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E., and König-Langlo, G.: The global energy balance from a surface perspective, Clim. Dynam., 40, 3107–3134, https://doi.org/10.1007/s00382-012-1569-8, 2013.
WMO: Turbulent Diffusion in the Atmosphere, World Meteorological Organisationd, Technical Note No. 24, 68, Geneva, Switzerland, https://library.wmo.int/idurl/4/59281 (last access: 18 October 2023), 1958.
Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L. M., and Donlon, C. J.: On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients, J. Geophy. Res.-Oceans, 121, 1229–1248, https://doi.org/10.1002/2015JC011427, 2016.
Wylie, R. G.: Psychrometric Wet Elements as a Basis For Precise Physico-Chemical Measurements, J. Res. Nat. Bur. Stand., 84, 161–177, 1979.
Short summary
Terrestrial radiation emitted by the Earth's atmosphere (long wave) is a key component of the energy balance at the Earth's surface. An important research question is how this terrestrial radiation is coupled to the evaporation of water at the surface. In this work, we evaluate a new laboratory wind tunnel system designed to measure the evaporation rate of a water surface exposed to different levels of terrestrial radiation.
Terrestrial radiation emitted by the Earth's atmosphere (long wave) is a key component of the...