Articles | Volume 16, issue 23
https://doi.org/10.5194/amt-16-5787-2023
https://doi.org/10.5194/amt-16-5787-2023
Research article
 | 
04 Dec 2023
Research article |  | 04 Dec 2023

Data treatment and corrections for estimating H2O and CO2 isotope fluxes from high-frequency observations

Robbert P. J. Moonen, Getachew A. Adnew, Oscar K. Hartogensis, Jordi Vilà-Guerau de Arellano, David J. Bonell Fontas, and Thomas Röckmann

Related authors

Amazon rainforest ecosystem exchange of CO2 and H2O through turbulent understory ejections
Robbert Petrus Johannes Moonen, Getachew Agmuas Adnew, Jordi Vilà-Guerau de Arellano, Oscar Karel Hartogensis, David Joan Bonell Fontas, Shujiro Komiya, Sam P. Jones, and Thomas Röckmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-452,https://doi.org/10.5194/egusphere-2025-452, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Comparison of methods for resolving the contributions of local emissions to measured concentrations
Taylor D. Edwards, Yee Ka Wong, Cheol-Heon Jeong, Jonathan M. Wang, Yushan Su, and Greg J. Evans
Atmos. Meas. Tech., 18, 2201–2240, https://doi.org/10.5194/amt-18-2201-2025,https://doi.org/10.5194/amt-18-2201-2025, 2025
Short summary
Gridded surface O3, NOx, and CO abundances for model metrics from the South Korean ground station network
Calum P. Wilson and Michael J. Prather
Atmos. Meas. Tech., 18, 1757–1769, https://doi.org/10.5194/amt-18-1757-2025,https://doi.org/10.5194/amt-18-1757-2025, 2025
Short summary
Revised methodology for CO2 and CH4 measurements at remote sites using a working standard-gas-saving system
Motoki Sasakawa, Noritsugu Tsuda, Toshinobu Machida, Mikhail Arshinov, Denis Davydov, Aleksandr Fofonov, and Boris Belan
Atmos. Meas. Tech., 18, 1717–1730, https://doi.org/10.5194/amt-18-1717-2025,https://doi.org/10.5194/amt-18-1717-2025, 2025
Short summary
Digitization and calibration of historical solar absorption infrared spectra from the Jungfraujoch site
Jamal Makkor, Mathias Palm, Matthias Buschmann, Emmanuel Mahieu, Martyn P. Chipperfield, and Justus Notholt
Atmos. Meas. Tech., 18, 1105–1114, https://doi.org/10.5194/amt-18-1105-2025,https://doi.org/10.5194/amt-18-1105-2025, 2025
Short summary
Advancing N2O flux chamber measurement techniques in nutrient-poor ecosystems
Nathalie Ylenia Triches, Jan Engel, Abdullah Bolek, Timo Vesala, Maija E. Marushchak, Anna-Maria Virkkala, Martin Heimann, and Mathias Göckede
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-203,https://doi.org/10.5194/amt-2024-203, 2025
Revised manuscript accepted for AMT
Short summary

Cited articles

Adnew, G. A., Pons, T. L., Koren, G., Peters, W., and Röckmann, T.: Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2, Biogeosciences, 17, 3903–3922, https://doi.org/10.5194/bg-17-3903-2020, 2020. a, b
Adnew, G. A., Pons, T. L., Koren, G., Peters, W., and Röckmann, T.: Exploring the potential of Δ17O in CO2 for determining mesophyll conductance, Plant Physiol., 192, 1234–1253, https://doi.org/10.1093/plphys/kiad173, 2023. a
Boone, A., Bellvert, J., Best, M., Brooke, J., Canut-Rocafort, G., Cuxart, J., Hartogensis, O., Le Moigne, P., Miró, R., and Polcher, J.: Updates on the International Land Surface Interactions with the Atmosphere over the Iberian Semi-Arid Environment (LIAISE) Field Campaign, Tech. rep., https://cw3e.ucsd.edu (last access: 24 November 2023), 2021. a, b
Clog, M., Stolper, D., and Eiler, J. M.: Kinetics of CO2(g)-H2O(1) isotopic exchange, including mass 47 isotopologues, Chem. Geol., 395, 1–10, https://doi.org/10.1016/j.chemgeo.2014.11.023, 2015. a
Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide, Geochim. Cosmochim. Ac., 12, 133–149, https://doi.org/10.1016/0016-7037(57)90024-8, 1957. a
Download
Short summary
Isotope fluxes allow for net ecosystem gas exchange fluxes to be partitioned into sub-components like plant assimilation, respiration and transpiration, which can help us better understand the environmental drivers of each partial flux. We share the results of a field campaign isotope fluxes were derived using a combination of laser spectroscopy and eddy covariance. We found lag times and high frequency signal loss in the isotope fluxes we derived and present methods to correct for both.
Share