Articles | Volume 17, issue 7
https://doi.org/10.5194/amt-17-2165-2024
https://doi.org/10.5194/amt-17-2165-2024
Research article
 | 
17 Apr 2024
Research article |  | 17 Apr 2024

Improved rain event detection in commercial microwave link time series via combination with MSG SEVIRI data

Maximilian Graf, Andreas Wagner, Julius Polz, Llorenç Lliso, José Alberto Lahuerta, Harald Kunstmann, and Christian Chwala

Related authors

Technical note: A simple feedforward artificial neural network for high-temporal-resolution rain event detection using signal attenuation from commercial microwave links
Erlend Øydvin, Maximilian Graf, Christian Chwala, Mareile Astrid Wolff, Nils-Otto Kitterød, and Vegard Nilsen
Hydrol. Earth Syst. Sci., 28, 5163–5171, https://doi.org/10.5194/hess-28-5163-2024,https://doi.org/10.5194/hess-28-5163-2024, 2024
Short summary
Rain event detection in commercial microwave link attenuation data using convolutional neural networks
Julius Polz, Christian Chwala, Maximilian Graf, and Harald Kunstmann
Atmos. Meas. Tech., 13, 3835–3853, https://doi.org/10.5194/amt-13-3835-2020,https://doi.org/10.5194/amt-13-3835-2020, 2020
Short summary
Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020,https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Observations of tall-building wakes using a scanning Doppler lidar
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
Atmos. Meas. Tech., 18, 1355–1371, https://doi.org/10.5194/amt-18-1355-2025,https://doi.org/10.5194/amt-18-1355-2025, 2025
Short summary
Mid-Atlantic nocturnal low-level jet characteristics: a machine learning analysis of radar wind profiles
Maurice Roots, John T. Sullivan, and Belay Demoz
Atmos. Meas. Tech., 18, 1269–1282, https://doi.org/10.5194/amt-18-1269-2025,https://doi.org/10.5194/amt-18-1269-2025, 2025
Short summary
Mitigating radome-induced bias in X-band weather radar polarimetric moments using an adaptive discrete Fourier transform algorithm
Padmanabhan Thiruvengadam, Guillaume Lesage, Ambinintsoa Volatiana Ramanamahefa, and Joël Van Baelen
Atmos. Meas. Tech., 18, 1185–1191, https://doi.org/10.5194/amt-18-1185-2025,https://doi.org/10.5194/amt-18-1185-2025, 2025
Short summary
GNSS-RO residual ionospheric error (RIE): a new method and assessment
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025,https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech., 18, 793–816, https://doi.org/10.5194/amt-18-793-2025,https://doi.org/10.5194/amt-18-793-2025, 2025
Short summary

Cited articles

Atlas, D.: Radar in Meteorology – Battan Memorial and 40th Anniversary Radar Meteorology Conference, Boston, USA, 9–13 November 1987, Amer. Meteor. Soc., ISBN 0933876866, 1990. a
Atlas, D. and Ulbrich, C. W.: Path- and Area-Integrated Rainfall Measurement by Microwave Attenuation in the 1–3 cm Band, J. Appl. Meteorol. Clim., 16, 1322–1331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2, 1977. a
Bartels, H., Weigl, E., Reich, T., Lang, P., Wagner, A., Kohler, O., and Gerlach, N.: Projekt RADOLAN – Routineverfahren zur Online-Aneichung der Radarniederschlagsdaten mit Hilfe von automatischen Bodenniederschlagsstationen (Ombrometer), Deutscher Wetterdienst, Hydrometeorologie, https://www.dwd.de/DE/leistungen/radolan/radolan_info/home_abschlussbericht.html (last access: 28 July 2023), 2004. a, b, c
Bruni, G., Reinoso, R., van de Giesen, N. C., Clemens, F. H. L. R., and ten Veldhuis, J. A. E.: On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution, Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, 2015. a
Chwala, C. and Kunstmann, H.: Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges, WIREs Water, 6, e1337, https://doi.org/10.1002/wat2.1337, 2019. a
Download
Short summary
Commercial microwave links (CMLs) can be used for rainfall retrieval. The detection of rainy periods in their attenuation time series is a crucial processing step. We investigate the usage of rainfall data from MSG SEVIRI for this task, compare this approach with existing methods, and introduce a novel combined approach. The results show certain advantages for SEVIRI-based methods, particularly for CMLs where existing methods perform poorly. Our novel combination yields the best performance.
Share