Articles | Volume 17, issue 13
https://doi.org/10.5194/amt-17-4183-2024
https://doi.org/10.5194/amt-17-4183-2024
Research article
 | 
15 Jul 2024
Research article |  | 15 Jul 2024

The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data

Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua

Related authors

Atmospheric vertical structure variations during severe aerosol pollution events based on lidar observations
Qimeng Li, Huige Di, Ning Chen, Xiao Cheng, Jiaying Yang, Yun Yuan, Qing Yan, and Dengxin Hua
EGUsphere, https://doi.org/10.5194/egusphere-2025-5393,https://doi.org/10.5194/egusphere-2025-5393, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024,https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Detection and analysis of cloud boundary in Xi'an, China, employing 35 GHz cloud radar aided by 1064 nm lidar
Yun Yuan, Huige Di, Yuanyuan Liu, Tao Yang, Qimeng Li, Qing Yan, Wenhui Xin, Shichun Li, and Dengxin Hua
Atmos. Meas. Tech., 15, 4989–5006, https://doi.org/10.5194/amt-15-4989-2022,https://doi.org/10.5194/amt-15-4989-2022, 2022
Short summary
Determination of atmospheric column condensate using active and passive remote sensing technology
Huige Di, Yun Yuan, Qing Yan, Wenhui Xin, Shichun Li, Jun Wang, Yufeng Wang, Lei Zhang, and Dengxin Hua
Atmos. Meas. Tech., 15, 3555–3567, https://doi.org/10.5194/amt-15-3555-2022,https://doi.org/10.5194/amt-15-3555-2022, 2022
Short summary
Performance evaluation of an integrated path differential absorption LIDAR model for surface pressure from low-Earth orbit
Guanglie Hong, Yu Dong, and Huige Di
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-69,https://doi.org/10.5194/amt-2022-69, 2022
Revised manuscript not accepted
Short summary

Cited articles

Cai, Z. X., Li, Z. Q., Li, P. R., Li, J. X., Sun, H. P., Yang, Y. M., Gao, X., Ren, G., Ren, R. M., and Wei, J.: Vertical Distributions of Aerosol and Cloud Microphysical Properties and the Aerosol Impact on a Continental Cumulus Cloud Based on Aircraft Measurements from the Loess Plateau of China, Atmos. Environ., 270, 118888, https://doi.org/10.1016/j.atmosenv.2021.118888, 2022. 
de Graaf, M., Apituley, A., and Donovan, D. P.: Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principle component analysis, Appl. Optics, 52, 2173–2186, https://doi.org/10.1364/AO.52.002173, 2013. 
Di, H. G., Wang, Q. Y., Hua, H. B., Li, S. W., Yan, Q., Liu, J. J., Song, Y. H., and Hua, D. X.: Aerosol Microphysical Particle Parameter Inversion and Error Analysis Based on Remote Sensing Data, Remote Sens.-Basel, 10, 1753, https://doi.org/10.3390/rs10111753, 2018a. 
Di, H. G., Zhao, J., Zhao, X., Zhang, Y. X., Wang, Z. X., Wang, X. W., Wang, Y. F., Zhao, H., and Hua, D. X.: Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China, J. Quant. Spectrosc. Ra., 218, 46–53, https://doi.org/10.1016/j.jqsrt.2018.07.009, 2018b. 
Ding, J. F., Tian, W. S., Xiao, H., Cheng, B., Liu, L., Sha, X. Z., Song, C., Sun, Y., ang Shu, W. X.: Raindrop size distribution and microphysical features of the extremely severe rainstorm on 20 July 2021 in Zhengzhou, China, Atmos. Res., 289, 106739, https://doi.org/10.1016/j.atmosres.2023.106739, 2023. 
Download
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Share