Articles | Volume 18, issue 1
https://doi.org/10.5194/amt-18-211-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-211-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benchmarking data-driven inversion methods for the estimation of local CO2 emissions from synthetic satellite images of XCO2 and NO2
Diego Santaren
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Janne Hakkarainen
Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Gerrit Kuhlmann
Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
Erik Koene
Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
Frédéric Chevallier
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Iolanda Ialongo
Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Hannakaisa Lindqvist
Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Janne Nurmela
Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Johanna Tamminen
Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Laia Amorós
Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Dominik Brunner
Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
Grégoire Broquet
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Data sets
Synthetic XCO2, CO and NO2 Observations for the CO2M and Sentinel-5 Satellites G. Kuhlmann et al. https://doi.org/10.5281/zenodo.4048227
Short summary
This study evaluates data-driven inversion methods for estimating CO2 emissions from local sources, such as power plants and cities, using meteorological data and XCO2 and NO2 satellite images rather than atmospheric transport modeling. We assess and compare the performance of five different methods using simulations of 1 year of satellite images, taken from the upcoming Copernicus CO2 Monitoring Mission, covering 15 power plants and the city of Berlin, Germany.
This study evaluates data-driven inversion methods for estimating CO2 emissions from local...