Articles | Volume 18, issue 15
https://doi.org/10.5194/amt-18-3647-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-3647-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TanSat-2: a new satellite for mapping solar-induced chlorophyll fluorescence at both red and far-red bands with high spatiotemporal resolution
Dianrun Zhao
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
Chu Zou
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Longfei Tian
Innovation Academy for Microsatellites of CAS, Shanghai 201203, China
Meng Fan
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Yulu Du
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Liangyun Liu
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
No articles found.
Rong Shang, Xudong Lin, Jing M. Chen, Yunjian Liang, Keyan Fang, Mingzhu Xu, Yulin Yan, Weimin Ju, Guirui Yu, Nianpeng He, Li Xu, Liangyun Liu, Jing Li, Wang Li, Jun Zhai, and Zhongmin Hu
Earth Syst. Sci. Data, 17, 3219–3241, https://doi.org/10.5194/essd-17-3219-2025, https://doi.org/10.5194/essd-17-3219-2025, 2025
Short summary
Short summary
Forest age is critical for carbon cycle modeling and effective forest management. Existing datasets, however, have low spatial resolutions or limited temporal coverage. This study introduces China's annual forest age dataset (CAFA), spanning 1986–2022 at a 30 m resolution. By tracking forest disturbances, we annually update ages. Validation shows small errors for disturbed forests and larger errors for undisturbed forests. CAFA can enhance carbon cycle modeling and forest management in China.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
Julien Lamour, Shawn P. Serbin, Alistair Rogers, Kelvin T. Acebron, Elizabeth Ainsworth, Loren P. Albert, Michael Alonzo, Jeremiah Anderson, Owen K. Atkin, Nicolas Barbier, Mallory L. Barnes, Carl J. Bernacchi, Ninon Besson, Angela C. Burnett, Joshua S. Caplan, Jérôme Chave, Alexander W. Cheesman, Ilona Clocher, Onoriode Coast, Sabrina Coste, Holly Croft, Boya Cui, Clément Dauvissat, Kenneth J. Davidson, Christopher Doughty, Kim S. Ely, Jean-Baptiste Féret, Iolanda Filella, Claire Fortunel, Peng Fu, Maquelle Garcia, Bruno O. Gimenez, Kaiyu Guan, Zhengfei Guo, David Heckmann, Patrick Heuret, Marney Isaac, Shan Kothari, Etsushi Kumagai, Thu Ya Kyaw, Liangyun Liu, Lingli Liu, Shuwen Liu, Joan Llusià, Troy Magney, Isabelle Maréchaux, Adam R. Martin, Katherine Meacham-Hensold, Christopher M. Montes, Romà Ogaya, Joy Ojo, Regison Oliveira, Alain Paquette, Josep Peñuelas, Antonia Debora Placido, Juan M. Posada, Xiaojin Qian, Heidi J. Renninger, Milagros Rodriguez-Caton, Andrés Rojas-González, Urte Schlüter, Giacomo Sellan, Courtney M. Siegert, Guangqin Song, Charles D. Southwick, Daisy C. Souza, Clément Stahl, Yanjun Su, Leeladarshini Sujeeun, To-Chia Ting, Vicente Vasquez, Amrutha Vijayakumar, Marcelo Vilas-Boas, Diane R. Wang, Sheng Wang, Han Wang, Jing Wang, Xin Wang, Andreas P. M. Weber, Christopher Y. S. Wong, Jin Wu, Fengqi Wu, Shengbiao Wu, Zhengbing Yan, Dedi Yang, and Yingyi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-213, https://doi.org/10.5194/essd-2025-213, 2025
Preprint under review for ESSD
Short summary
Short summary
We present the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. This repository provides a unique source of information for creating hyperspectral models for predicting photosynthetic traits and associated leaf traits in terrestrial plants.
Chu Zou, Shanshan Du, Xinjie Liu, and Liangyun Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-94, https://doi.org/10.5194/essd-2025-94, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
Understanding plant sunlight absorption is crucial for tracking global ecosystem health. We developed a 1995–2023 dataset that enhances satellite-based plant activity measurements by resolving data inconsistencies and improving resolution. Using advanced modeling, we harmonized signals from multiple satellites, cutting errors by 45 %. This offers clearer global photosynthesis trends, aiding climate research and vegetation monitoring.
Xiao Zhang, Liangyun Liu, Tingting Zhao, Wenhan Zhang, Linlin Guan, Ming Bai, and Xidong Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-73, https://doi.org/10.5194/essd-2025-73, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This work describes a novel global 10 m land-cover dataset with fine classification system, which contains 30 land-cover subcategories and achieves the fulfilling performance over the globe.
Yu Mao, Weimin Ju, Hengmao Wang, Liangyun Liu, Haikun Wang, Shuzhuang Feng, Mengwei Jia, and Fei Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3672, https://doi.org/10.5194/egusphere-2024-3672, 2025
Short summary
Short summary
The Russia-Ukraine war in 2022 severely disrupted Ukraine’s economy, with significant reductions in industrial, transportation, and residential activities. Our research used satellite data to track changes in nitrogen oxide emissions, a key indicator of human activity, during the war. We found a 28 % decline in emissions, which was twice of the decrease caused by the COVID-19 pandemic. This study highlights how modern warfare can deeply impact both the environment and economic stability.
Yiguo Pang, Longfei Tian, Denghui Hu, Shuang Gao, and Guohua Liu
Atmos. Meas. Tech., 18, 455–470, https://doi.org/10.5194/amt-18-455-2025, https://doi.org/10.5194/amt-18-455-2025, 2025
Short summary
Short summary
The spatial adjacency of methane point sources can result in plume overlapping, presenting challenges for quantification from space. A separation and quantification method combining the Gaussian plume model and the integrated mass enhancement method is proposed. A modern parameter estimation technique is introduced to separate the overlapping plumes from satellite observations. The proposed method is evaluated with synthesized observations and real satellite observations.
Chu Zou, Shanshan Du, Xinjie Liu, and Liangyun Liu
Earth Syst. Sci. Data, 16, 2789–2809, https://doi.org/10.5194/essd-16-2789-2024, https://doi.org/10.5194/essd-16-2789-2024, 2024
Short summary
Short summary
To obtain a temporally consistent satellite solar-induced chlorophyll fluorescence
(SIF) product (TCSIF), we corrected for time degradation of GOME-2A using a pseudo-invariant method. After the correction, the global SIF grew by 0.70 % per year from 2007 to 2021, and 62.91 % of vegetated regions underwent an increase in SIF. The dataset is a promising tool for monitoring global vegetation variation and will advance our understanding of vegetation's photosynthetic activities at a global scale.
(SIF) product (TCSIF), we corrected for time degradation of GOME-2A using a pseudo-invariant method. After the correction, the global SIF grew by 0.70 % per year from 2007 to 2021, and 62.91 % of vegetated regions underwent an increase in SIF. The dataset is a promising tool for monitoring global vegetation variation and will advance our understanding of vegetation's photosynthetic activities at a global scale.
Liangyun Liu and Xiao Zhang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 137–143, https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-137-2024, 2024
Xiao Zhang, Tingting Zhao, Hong Xu, Wendi Liu, Jinqing Wang, Xidong Chen, and Liangyun Liu
Earth Syst. Sci. Data, 16, 1353–1381, https://doi.org/10.5194/essd-16-1353-2024, https://doi.org/10.5194/essd-16-1353-2024, 2024
Short summary
Short summary
This work describes GLC_FCS30D, the first global 30 m land-cover dynamics monitoring dataset, which contains 35 land-cover subcategories and covers the period of 1985–2022 in 26 time steps (its maps are updated every 5 years before 2000 and annually after 2000).
M. Wang, M. Fan, Z. Wang, L. Chen, L. Bai, Y. Chen, and M. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-1-2023, 395–402, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-395-2023, https://doi.org/10.5194/isprs-archives-XLVIII-M-1-2023-395-2023, 2023
Xiao Zhang, Liangyun Liu, Tingting Zhao, Xidong Chen, Shangrong Lin, Jinqing Wang, Jun Mi, and Wendi Liu
Earth Syst. Sci. Data, 15, 265–293, https://doi.org/10.5194/essd-15-265-2023, https://doi.org/10.5194/essd-15-265-2023, 2023
Short summary
Short summary
An accurate global 30 m wetland dataset that can simultaneously cover inland and coastal zones is lacking. This study proposes a novel method for wetland mapping and generates the first global 30 m wetland map with a fine classification system (GWL_FCS30), including five inland wetland sub-categories (permanent water, swamp, marsh, flooded flat and saline) and three coastal wetland sub-categories (mangrove, salt marsh and tidal flats).
Xiaojin Qian, Liangyun Liu, Xidong Chen, Xiao Zhang, Siyuan Chen, and Qi Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-277, https://doi.org/10.5194/essd-2022-277, 2022
Manuscript not accepted for further review
Short summary
Short summary
Leaf chlorophyll content (LCC) is an important plant physiological trait and a proxy for leaf photosynthetic capacity. We generated a global LCC dataset from ENVISAT MERIS and Sentinel-3 OLCI satellite data for the period 2003–2012 to 2018–2020 using a physically-based radiative transfer modeling approach. This new LCC dataset spanning nearly 20 years will provide a valuable opportunity for the monitoring of vegetation growth and terrestrial carbon cycle modeling on a global scale.
Xidong Chen, Liangyun Liu, Xiao Zhang, Junsheng Li, Shenglei Wang, Yuan Gao, and Jun Mi
Hydrol. Earth Syst. Sci., 26, 3517–3536, https://doi.org/10.5194/hess-26-3517-2022, https://doi.org/10.5194/hess-26-3517-2022, 2022
Short summary
Short summary
A 30 m LAke Water Secchi Depth (LAWSD30) dataset of China was first developed for 1985–2020, and national-scale water clarity estimations of lakes in China over the past 35 years were analyzed. Lake clarity in China exhibited a significant downward trend before the 21st century, but improved after 2000. The developed LAWSD30 dataset and the evaluation results can provide effective guidance for water preservation and restoration.
Xiao Zhang, Liangyun Liu, Tingting Zhao, Yuan Gao, Xidong Chen, and Jun Mi
Earth Syst. Sci. Data, 14, 1831–1856, https://doi.org/10.5194/essd-14-1831-2022, https://doi.org/10.5194/essd-14-1831-2022, 2022
Short summary
Short summary
Accurately mapping impervious-surface dynamics has great scientific significance and application value for research on urban sustainable development, the assessment of anthropogenic carbon emissions and global ecological-environment modeling. In this study, a novel and accurate global 30 m impervious surface dynamic dataset (GISD30) for 1985 to 2020 was produced using the spectral-generalization method and time-series Landsat imagery on the Google Earth Engine cloud computing platform.
Lu Yao, Yi Liu, Dongxu Yang, Zhaonan Cai, Jing Wang, Chao Lin, Naimeng Lu, Daren Lyu, Longfei Tian, Maohua Wang, Zengshan Yin, Yuquan Zheng, and Sisi Wang
Atmos. Meas. Tech., 15, 2125–2137, https://doi.org/10.5194/amt-15-2125-2022, https://doi.org/10.5194/amt-15-2125-2022, 2022
Short summary
Short summary
A physics-based SIF retrieval algorithm, IAPCAS/SIF, is introduced and applied to OCO-2 and TanSat measurements. The strong linear relationship between OCO-2 SIF retrieved by IAPCAS/SIF and the official product indicates the algorithm's reliability. The good consistency in the spatiotemporal patterns and magnitude of the OCO-2 and TanSat SIF products suggests that the combinative usage of multi-satellite products has potential and that such work would contribute to further research.
Xiao Zhang, Liangyun Liu, Xidong Chen, Yuan Gao, Shuai Xie, and Jun Mi
Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, https://doi.org/10.5194/essd-13-2753-2021, 2021
Short summary
Short summary
Over past decades, a lot of global land-cover products have been released; however, these still lack a global land-cover map with a fine classification system and spatial resolution simultaneously. In this study, a novel global 30 m landcover classification with a fine classification system for the year 2015 (GLC_FCS30-2015) was produced by combining time series of Landsat imagery and high-quality training data from the GSPECLib on the Google Earth Engine computing platform.
Xiao Zhang, Liangyun Liu, Changshan Wu, Xidong Chen, Yuan Gao, Shuai Xie, and Bing Zhang
Earth Syst. Sci. Data, 12, 1625–1648, https://doi.org/10.5194/essd-12-1625-2020, https://doi.org/10.5194/essd-12-1625-2020, 2020
Short summary
Short summary
The amount of impervious surface is an important indicator in the monitoring of the intensity of human activity and environmental change. In this study, a global 30 m impervious surface map was developed by using multisource, multitemporal remote sensing data based on the Google Earth Engine platform. The accuracy assessment indicated that the generated map had more optimal measurement accuracy compared with other state-of-art impervious surface products.
Xiaojin Qian, Liangyun Liu, Holly Croft, and Jingming Chen
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-228, https://doi.org/10.5194/bg-2019-228, 2019
Preprint withdrawn
Short summary
Short summary
The leaf maximum carboxylation rate (Vcmax) is a key photosynthesis parameter. We attempt to investigate whether a universal and stable relationship exists between leaf Vcmax25 and chlorophyll content across different C3 plant types from a plant physiological perspective and verify it using field experiments. The results confirm that leaf chlorophyll can be a reliable proxy for estimating Vcmax25, providing an operational approach for the global mapping of Vcmax25 across different plant types.
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Propagating information content: an example with advection
Best estimate of the planetary boundary layer height from multiple remote sensing measurements
Observing atmospheric rivers using multi-GNSS airborne radio occultation: system description and data evaluation
Evolution of wind field in the atmospheric boundary layer using multiple-source observations during the passage of Super Typhoon Doksuri (2305)
Observed impact of the GNSS clock data rate on radio occultation bending angles for Sentinel-6A and COSMIC-2
A new method to retrieve relative humidity profiles from a synergy of Raman lidar, microwave radiometer, and satellite
Combining commercial microwave links and weather radar for classification of dry snow and rainfall
Improved consistency in solar-induced fluorescence retrievals from GOME-2A with the SIFTER v3 algorithm
An information content approach to diagnosing and improving CLIMCAPS retrieval consistency across instruments and satellites
Characterizing urban planetary boundary layer dynamics using 3-year Doppler wind lidar measurements in a western Yangtze River Delta city, China
Radar-based high-resolution ensemble precipitation analyses over the French Alps
Gravity waves above the northern Atlantic and Europe during streamer events using Aeolus
CLEAR: a new discrete multiplicative random cascade model for disaggregating path-integrated rainfall estimates from commercial microwave links
Observations of tall-building wakes using a scanning Doppler lidar
High-resolution maps of Arctic surface skin temperature and type retrieved from airborne thermal infrared imagery collected during the HALO-(𝒜𝒞)³ campaign
Mid-Atlantic nocturnal low-level jet characteristics: a machine learning analysis of radar wind profiles
The MATS satellite: Limb image data processing and calibration
Mitigating radome-induced bias in X-band weather radar polarimetric moments using an adaptive discrete Fourier transform algorithm
GNSS-RO residual ionospheric error (RIE): a new method and assessment
Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations
Improved hydrometeor detection near the Earth’s surface by a conically scanning spaceborne W-band radar
Assimilation of GNSS Zenith Delays and Tropospheric Gradients: A Sensitivity Study utilizing sparse and dense station networks
Comparative experimental validation of microwave hyperspectral atmospheric soundings in clear-sky conditions
A hybrid algorithm for ship clutter identification in pulse compression polarimetric radar observations
Global Navigation Satellite System (GNSS) radio occultation climatologies mapped by machine learning and Bayesian interpolation
Use of commercial microwave links as scintillometers: potential and limitations towards evaporation estimation
Determination of low-level temperature profiles from microwave radiometer observations during rain
Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Sampling the diurnal and annual cycles of the Earth's energy imbalance with constellations of satellite-borne radiometers
Retrieval of top-of-atmosphere fluxes from combined EarthCARE lidar, imager, and broadband radiometer observations: the BMA-FLX product
Analysis of the measurement uncertainty for a 3D wind lidar
Improving solution availability and temporal consistency of an optimal-estimation physical retrieval for ground-based thermodynamic boundary layer profiling
Reconstruction of 3D precipitation measurements from FY-3G MWRI-RM imaging and sounding channels
An improved geolocation methodology for spaceborne radar and lidar systems
Combining low- and high-frequency microwave radiometer measurements from the MOSAiC expedition for enhanced water vapour products
An LES Exploration of the Assumptions used in Retrieving Entrainment from a Mixing Diagram Approach with Ground-Based Remote Sensors
HAMSTER: Hyperspectral Albedo Maps dataset with high Spatial and TEmporal Resolution
Retrieving Tropospheric Refractivity Structure using Interferometry of Aircraft Radio Transmissions
Global-scale gravity wave analysis methodology for the ESA Earth Explorer 11 candidate CAIRT
Retrieval of pseudo-BRDF-adjusted surface reflectance at 440 nm from the Geostationary Environmental Monitoring Spectrometer (GEMS)
Drop size distribution retrieval using dual-polarization radar at C-band and S-band
Thermal tides in the middle atmosphere at mid-latitudes measured with a ground-based microwave radiometer
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Determination of high-precision tropospheric delays using crowdsourced smartphone GNSS data
Unfiltering of the EarthCARE Broadband Radiometer (BBR) observations: the BM-RAD product
Variance estimations in the presence of intermittent interference and their applications to incoherent scatter radar signal processing
David D. Turner, Maria P. Cadeddu, Julia M. Simonson, and Timothy J. Wagner
Atmos. Meas. Tech., 18, 3533–3546, https://doi.org/10.5194/amt-18-3533-2025, https://doi.org/10.5194/amt-18-3533-2025, 2025
Short summary
Short summary
When deriving a geophysical variable from remote sensors, the uncertainty and information content are critical. The latter quantify specifies what fraction of a real perturbation would be observed in the derived variable. This paper outlines, for the first time, a methodology for propagating the information content from multiple remote sensors into a derived product using horizontal advection as an example.
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025, https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Short summary
Planetary boundary layer height (PBLHT) is an important parameter in atmospheric process studies and numerical model simulations. We use machine learning methods to produce a best-estimate planetary boundary layer height (PBLHT-BE-ML) by integrating four PBLHT estimates derived from remote sensing measurements. We demonstrated that PBLHT-BE-ML greatly improved the comparisons against sounding-derived PBLHT.
Bing Cao, Jennifer S. Haase, Michael J. Murphy Jr., and Anna M. Wilson
Atmos. Meas. Tech., 18, 3361–3392, https://doi.org/10.5194/amt-18-3361-2025, https://doi.org/10.5194/amt-18-3361-2025, 2025
Short summary
Short summary
This paper describes an airborne radio occultation (ARO) observation system installed on a reconnaissance aircraft that uses GPS signal refraction in the atmosphere to retrieve information about the temperature and moisture in the storm environment as far away as 400 km surrounding the flight track. The characteristics and quality of 1700 ARO refractivity profiles were assessed. These observations are collected to help understand atmospheric rivers and improve their forecasting.
Xiaoye Wang, Jing Xu, Songhua Wu, Qichao Wang, Guangyao Dai, Peizhi Zhu, Zhizhong Su, Sai Chen, Xiaomeng Shi, and Mengqi Fan
Atmos. Meas. Tech., 18, 3305–3320, https://doi.org/10.5194/amt-18-3305-2025, https://doi.org/10.5194/amt-18-3305-2025, 2025
Short summary
Short summary
In this paper, we propose a data fusion method to obtain the no-blind-zone wind speed profiles covering the whole atmospheric boundary layer based on the joint measurements of coherent Doppler lidar (CDL), radar wind profiler (RWP) and automatic weather station (AWS). Since the above instruments are widely deployed in China, we believe this method has broad application prospects for the improvement of the boundary layer parameterization scheme in numerical forecast models.
Sebastiano Padovan, Axel von Engeln, Saverio Paolella, Yago Andres, Chad R. Galley, Riccardo Notarpietro, Veronica Rivas Boscan, Francisco Sancho, Francisco Martin Alemany, Nicolas Morew, and Christian Marquardt
Atmos. Meas. Tech., 18, 3217–3228, https://doi.org/10.5194/amt-18-3217-2025, https://doi.org/10.5194/amt-18-3217-2025, 2025
Short summary
Short summary
Using about 120 000 occultations recorded by the Sentinel-6A and COSMIC-2 satellites, we show that using high-rate (1 s) GLONASS clock products greatly improves GLONASS occultation statistics and vertical error correlation. For GPS, the best performance is obtained with 5 s clock products. These findings result from the short-timescale behavior of the onboard atomic clocks and are important given the impact of radio occultation measurements on numerical weather predictions and climate studies.
Chengli Ji, Qiankai Jin, Feilong Li, Yuyang Liu, Zhicheng Wang, Jiajia Mao, Xiaoyu Ren, Yan Xiang, Wanlin Jian, Zhenyi Chen, and Peitao Zhao
Atmos. Meas. Tech., 18, 3179–3191, https://doi.org/10.5194/amt-18-3179-2025, https://doi.org/10.5194/amt-18-3179-2025, 2025
Short summary
Short summary
This study presents the humidity measurements with a synergistic algorithm combining Raman lidar, microwave radiometer, and satellite. The results from 47 sites in China show the best correlation over 0.9 concerning the radiosonde measurements. This validates the relative humidity (RH) accuracy with various data integrations. Three representative sites present the different seasonal characteristics, indicating the geographic and height influences on the RH vertical distribution.
Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco (C. Z.) van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, and Vegard Nilsen
Atmos. Meas. Tech., 18, 2279–2293, https://doi.org/10.5194/amt-18-2279-2025, https://doi.org/10.5194/amt-18-2279-2025, 2025
Short summary
Short summary
We present a novel method for classifying rain and snow by combining data from commercial microwave links (CMLs) with weather radar. We compare this to a reference method using dew point temperature for precipitation type classification. Evaluations with nearby disdrometers show that CMLs improve the classification of dry snow and rainfall, outperforming the reference method.
Juliëtte C. S. Anema, K. Folkert Boersma, Lieuwe G. Tilstra, Olaf N. E. Tuinder, and Willem W. Verstraeten
Atmos. Meas. Tech., 18, 1961–1979, https://doi.org/10.5194/amt-18-1961-2025, https://doi.org/10.5194/amt-18-1961-2025, 2025
Short summary
Short summary
Long-term records of plant fluorescence offer vital insights into changing vegetation activity. The GOME-2A sensor provides extensive global observations but suffers from calibration and instrument degradation, which affects data consistency. This study presents the SIFTER v3 algorithm, which effectively resolves these issues and includes other improvements, resulting in robust, accurate, and consistent GOME-2A fluorescence measurements from 2007 to 2017.
Nadia Smith and Christopher D. Barnet
Atmos. Meas. Tech., 18, 1823–1839, https://doi.org/10.5194/amt-18-1823-2025, https://doi.org/10.5194/amt-18-1823-2025, 2025
Short summary
Short summary
CLIMCAPS extends the Aqua AIRS+AMSU record with retrievals from CrIS+ATMS on Suomi National Polar-orbiting Partnership (SNPP) and Joint Polar Satellite System series (JPSS-1 to JPSS-4). With “continuous”, we mean a data record that is consistent in its characterization of natural variation despite changes in source instrumentation. Here we investigate how sounding continuity can improve across the full CLIMCAPS record (2002 to the present day), spanning multiple instruments and satellites.
Tianwen Wei, Mengya Wang, Kenan Wu, Jinlong Yuan, Haiyun Xia, and Simone Lolli
Atmos. Meas. Tech., 18, 1841–1857, https://doi.org/10.5194/amt-18-1841-2025, https://doi.org/10.5194/amt-18-1841-2025, 2025
Short summary
Short summary
This study analyzes three years of wind lidar measurements to explore the dynamics of the urban planetary boundary layer in Hefei, China. Results reveal that nocturnal low-level jets are most frequent in spring and intensify in summer, significantly enhancing turbulence and shear near the surface, particularly at night. Additionally, cloud cover raises the mixing layer height by approximately 100 m at night due to the greenhouse effect but reduces it by up to 200 m in the afternoon.
Matthieu Vernay, Matthieu Lafaysse, and Clotilde Augros
Atmos. Meas. Tech., 18, 1731–1755, https://doi.org/10.5194/amt-18-1731-2025, https://doi.org/10.5194/amt-18-1731-2025, 2025
Short summary
Short summary
This paper provides a comprehensive evaluation of the quality of radar-based precipitation estimation in mountainous areas and presents a method to mitigate the main shortcomings identified. It then compares three different ensemble analysis methods that combine radar-based precipitation estimates with forecasts from an ensemble numerical weather prediction model.
Sabine Wüst, Lisa Küchelbacher, Franziska Trinkl, and Michael Bittner
Atmos. Meas. Tech., 18, 1591–1607, https://doi.org/10.5194/amt-18-1591-2025, https://doi.org/10.5194/amt-18-1591-2025, 2025
Short summary
Short summary
Information on the energy transported by atmospheric gravity waves (GWs) is crucial for improving atmosphere models. Most space-based studies report the potential energy. We use Aeolus wind data to estimate the kinetic energy (density). However, the data quality is a challenge for such analyses, as the accuracy of the data is in the range of typical GW amplitudes. We find a temporal coincidence between enhanced or breaking planetary waves and enhanced gravity wave kinetic energy density.
Martin Fencl and Marc Schleiss
EGUsphere, https://doi.org/10.5194/egusphere-2025-487, https://doi.org/10.5194/egusphere-2025-487, 2025
Short summary
Short summary
A novel disaggregation algorithm for commercial microwave links (CMLs), named CLEAR (CML Segments with Equal Amounts of Rain), is proposed. CLEAR utilizes a multiplicative random cascade generator to control the splitting of link segments. The evaluation performed both on virtual and real CML data shows that CLEAR outperforms a commonly used benchmark algorithm. Moreover, the stochastic nature of CLEAR allows it to represent uncertainty as an ensemble of rain rate distributions along CML paths.
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
Atmos. Meas. Tech., 18, 1355–1371, https://doi.org/10.5194/amt-18-1355-2025, https://doi.org/10.5194/amt-18-1355-2025, 2025
Short summary
Short summary
A Doppler lidar was placed in a highly built-up area in London to measure wakes from tall buildings during a period of 1 year. We were able to detect wakes and assess their dependence on wind speed, wind direction, and atmospheric stability.
Joshua Jeremias Müller, Michael Schäfer, Sophie Rosenburg, André Ehrlich, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/amt-2024-3967, https://doi.org/10.5194/amt-2024-3967, 2025
Short summary
Short summary
We retrieved high-resolution maps of Arctic surface temperature and type using airborne thermal infrared imagery from the HALO-(𝒜𝒞)3 campaign. Our study highlights small-scale surface variability, complementing satellite observations. Surface temperature was retrieved via radiative transfer simulations, while surface type was classified using machine learning. Additionally, we analyzed segment sizes of each surface type, presenting results based on their distance from the sea-ice edge.
Maurice Roots, John T. Sullivan, and Belay Demoz
Atmos. Meas. Tech., 18, 1269–1282, https://doi.org/10.5194/amt-18-1269-2025, https://doi.org/10.5194/amt-18-1269-2025, 2025
Short summary
Short summary
This paper presents a supervised-machine-learning approach for the automatic isolation of nocturnal low-level jets (NLLJs) using observations from a radar wind profiler. This analysis isolated 90 southwesterly NLLJs observed from May to September 2017–2021, highlighting key features in the evolution and morphology of the mid-Atlantic NLLJ.
Linda Megner, Jörg Gumbel, Ole Martin Christensen, Björn Linder, Donal Patrick Murtagh, Nickolay Ivchenko, Lukas Krasauskas, Jonas Hedin, Joachim Dillner, Gabriel Giono, Georgi Olentsenko, Louis Kern, and Jacek Stegman
EGUsphere, https://doi.org/10.5194/egusphere-2025-265, https://doi.org/10.5194/egusphere-2025-265, 2025
Short summary
Short summary
The MATS satellite mission studies atmospheric gravity waves, crucial for momentum transport between atmospheric layers. Launched in November 2022, MATS uses a limb-viewing telescope to capture high-resolution images of Noctilucent clouds and airglow, visualizing wave patterns in the high atmosphere. This paper accompanies the public release of the level 1b data set, i.e. calibrated limb images. Later products will provide global maps of gravity wave properties, airglow and Noctilucent clouds.
Padmanabhan Thiruvengadam, Guillaume Lesage, Ambinintsoa Volatiana Ramanamahefa, and Joël Van Baelen
Atmos. Meas. Tech., 18, 1185–1191, https://doi.org/10.5194/amt-18-1185-2025, https://doi.org/10.5194/amt-18-1185-2025, 2025
Short summary
Short summary
This study explores how the joints in a weather radar's protective cover affect its measurements. We developed a new method to correct these errors, improving the accuracy of the radar's data. Our method was tested during an intense cyclone on Réunion Island, demonstrating significant improvements in data accuracy. This research is crucial for enhancing weather predictions and understanding, particularly in challenging terrains.
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025, https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Short summary
Global Navigation Satellite System radio occultation data help monitor climate and weather prediction but are affected by residual ionospheric errors (RIEs). A new excess-phase-gradient method detects and corrects RIEs, showing both positive and negative values, varying by latitude, time, and solar activity. Tests show that RIE impacts polar stratosphere temperatures in models, with differences up to 3–4 K. This highlights the need for RIE correction to improve the accuracy of data assimilation.
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, and Dmitri Moisseev
Atmos. Meas. Tech., 18, 793–816, https://doi.org/10.5194/amt-18-793-2025, https://doi.org/10.5194/amt-18-793-2025, 2025
Short summary
Short summary
Accurate KDP estimates are crucial in radar-based applications. We quantify the uncertainties of several publicly available KDP estimation methods for multiple rainfall intensities. We use C-band weather radar observations and employed a self-consistency KDP, estimated from reflectivity and differential reflectivity, as a framework for the examination. Our study provides guidance for the performance, uncertainties, and optimisation of the methods, focusing mainly on accuracy and robustness.
Marco Coppola, Alessandro Battaglia, Frederic Tridon, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-416, https://doi.org/10.5194/egusphere-2025-416, 2025
Short summary
Short summary
The WIVERN conically scanning Doppler W-band radar, has the potential, for the first time, to map the mesoscale and synoptic variability of cloud dynamics, and precipitation microphysics. This study shows that the oblique angle of incidence will be advantageous compared to standard nadir-looking radars due to substantial clutter suppression over ocean surface. This feature will enable the detection and quantification of light and moderate precipitation, with improved proximity to the surface.
Rohith Thundathil, Florian Zus, Galina Dick, and Jens Wickert
EGUsphere, https://doi.org/10.5194/egusphere-2025-19, https://doi.org/10.5194/egusphere-2025-19, 2025
Short summary
Short summary
Tropospheric gradients provide information on the moisture distribution, whereas ZTDs provide the absolute amount of moisture through integrated water vapor. When TGs are assimilated with ZTDs, it helps the model actuate the moisture fields, correcting its dynamics. In our research, we show evidence that in particular regions with very few GNSS stations, the assimilation of gradients on top of ZTDs can provide the same impact as the assimilation of only ZTDs with dense coverage of GNSS stations.
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 18, 471–485, https://doi.org/10.5194/amt-18-471-2025, https://doi.org/10.5194/amt-18-471-2025, 2025
Short summary
Short summary
This study evaluates and compares a new microwave hyperspectrometer with an infrared hyperspectrometer for clear-sky temperature and water vapor retrievals. The analysis reveals that the information content of the infrared hyperspectrometer exceeds that of the microwave hyperspectrometer and provides higher vertical resolution in ground-based zenith measurements. Leveraging the ground–airborne synergy between the two instruments yielded optimal sounding results.
Shuai Zhang, Haoran Li, and Dmitri Moisseev
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-194, https://doi.org/10.5194/amt-2024-194, 2025
Revised manuscript accepted for AMT
Short summary
Short summary
The data quality of weather radar near coastlines can be affected by echoes from ships, and this interference is exacerbated when pulse compression technology is used. This study developed a hybrid ship clutter identification algorithm based on artificial intelligence and heuristic criteria, effectively mitigating the issue. The successful reproduction of ship tracks in the Gulf of Finland supports this conclusion.
Endrit Shehaj, Stephen Leroy, Kerri Cahoy, Alain Geiger, Laura Crocetti, Gregor Moeller, Benedikt Soja, and Markus Rothacher
Atmos. Meas. Tech., 18, 57–72, https://doi.org/10.5194/amt-18-57-2025, https://doi.org/10.5194/amt-18-57-2025, 2025
Short summary
Short summary
This work investigates whether machine learning (ML) can offer an alternative to existing methods to map radio occultation (RO) products, allowing the extraction of information not visible in direct observations. ML can further improve the results of Bayesian interpolation, a state-of-the-art method to map RO observations. The results display improvements in horizontal and temporal domains, at heights ranging from the planetary boundary layer up to the lower stratosphere, and for all seasons.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2974, https://doi.org/10.5194/egusphere-2024-2974, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024, https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Short summary
Microwave radiometers are usually not able to provide atmospheric quantities such as temperature profiles during rain. We present a method based on a selection of specific frequencies and elevation angles from microwave radiometer observations. A comparison with a numerical weather prediction model shows the presented method allows low-level temperature profiles during rain to be resolved, with rain rates of up to 2.5 mm h−1,, which was not possible before with state-of-the-art retrievals.
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024, https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Short summary
The Atmospheric Laser Doppler Instrument (ALADIN) on the Aeolus satellite was the first of its kind to measure high-resolution vertical profiles of aerosols and cloud properties from space. We present an algorithm that produces Aeolus lidar surface returns (LSRs), containing useful information for measuring UV reflectivity. Aeolus LSRs matched well with existing UV reflectivity data from other satellites, like GOME-2 and TROPOMI, and demonstrated excellent sensitivity to modeled snow cover.
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
Atmos. Meas. Tech., 17, 7077–7095, https://doi.org/10.5194/amt-17-7077-2024, https://doi.org/10.5194/amt-17-7077-2024, 2024
Short summary
Short summary
The imbalance between the energy the Earth absorbs from the Sun and the energy the Earth emits back into space gives rise to climate change, but measuring the small imbalance is challenging. We simulate satellites in various orbits to investigate how well they sample the imbalance and find that the best option is to combine at least two satellites that see complementary parts of the Earth and cover the daily and annual cycles. This information is useful when planning future satellite missions.
Almudena Velázquez Blázquez, Carlos Domenech, Edward Baudrez, Nicolas Clerbaux, Carla Salas Molar, and Nils Madenach
Atmos. Meas. Tech., 17, 7007–7026, https://doi.org/10.5194/amt-17-7007-2024, https://doi.org/10.5194/amt-17-7007-2024, 2024
Short summary
Short summary
This paper focuses on the BMA-FLX processor, in which thermal and solar top-of-atmosphere radiative fluxes are obtained from longwave and shortwave radiances measured along track by the EarthCARE Broadband Radiometer (BBR). The BBR measurements, at three fixed viewing angles (fore, nadir, aft), are co-registered either at the surface or at a reference level. A combined flux from the three BRR views is obtained. The algorithm has been successfully validated against test scenes.
Wolf Knöller, Gholamhossein Bagheri, Philipp von Olshausen, and Michael Wilczek
Atmos. Meas. Tech., 17, 6913–6931, https://doi.org/10.5194/amt-17-6913-2024, https://doi.org/10.5194/amt-17-6913-2024, 2024
Short summary
Short summary
Three-dimensional (3D) wind velocity measurements are of major importance for the characterization of atmospheric turbulence. This paper presents a detailed study of the measurement uncertainty of a three-beam wind lidar designed for mounting on airborne platforms. Considering the geometrical constraints, the analysis provides quantitative estimates for the measurement uncertainty of all components of the 3D wind vector. As a result, we propose optimized post-processing for error reduction.
Bianca Adler, David D. Turner, Laura Bianco, Irina V. Djalalova, Timothy Myers, and James M. Wilczak
Atmos. Meas. Tech., 17, 6603–6624, https://doi.org/10.5194/amt-17-6603-2024, https://doi.org/10.5194/amt-17-6603-2024, 2024
Short summary
Short summary
Continuous profile observations of temperature and humidity in the lowest part of the atmosphere are essential for the evaluation of numerical weather prediction models and data assimilation for better weather forecasts. Such profiles can be retrieved from passive ground-based remote sensing instruments like infrared spectrometers and microwave radiometers. In this study, we describe three recent modifications to the retrieval framework TROPoe for improved temperature and humidity profiles.
Yunfan Yang, Wei Han, Haofei Sun, Jun Li, Jiapeng Yan, and Zhiqiu Gao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-175, https://doi.org/10.5194/amt-2024-175, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Our research improves satellite-based precipitation monitoring by using deep learning to reconstruct radar observations from passive microwave radiances. Active radar is costly, so we focus on a more accessible approach. Using data from the FengYun-3G satellite, we successfully tracked severe weather like Typhoon Khanun and heavy rainfall in Beijing in 2023. This method enhances global precipitation data and helps better understand extreme weather.
Bernat Puigdomènech Treserras and Pavlos Kollias
Atmos. Meas. Tech., 17, 6301–6314, https://doi.org/10.5194/amt-17-6301-2024, https://doi.org/10.5194/amt-17-6301-2024, 2024
Short summary
Short summary
The paper presents a comprehensive approach to improve the geolocation accuracy of spaceborne radar and lidar systems, crucial for the successful interpretation of data from the upcoming EarthCARE mission. The paper details the technical background of the presented methods and various examples of geolocation analyses, including a short period of CloudSat observations when the star tracker was not operating properly and lifetime statistics from the CloudSat and CALIPSO missions.
Andreas Walbröl, Hannes J. Griesche, Mario Mech, Susanne Crewell, and Kerstin Ebell
Atmos. Meas. Tech., 17, 6223–6245, https://doi.org/10.5194/amt-17-6223-2024, https://doi.org/10.5194/amt-17-6223-2024, 2024
Short summary
Short summary
We developed retrievals of integrated water vapour (IWV), temperature profiles, and humidity profiles from ground-based passive microwave remote sensing measurements gathered during the MOSAiC expedition. We demonstrate and quantify the benefit of combining low- and high-frequency microwave radiometers to improve humidity profiling and IWV estimates by comparing the retrieved quantities to single-instrument retrievals and reference datasets (radiosondes).
Tessa E. Rosenberger, Thijs Heus, Girish N. Raghunathan, David D. Turner, Timothy J. Wagner, and Julia M. Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2894, https://doi.org/10.5194/egusphere-2024-2894, 2024
Short summary
Short summary
Entrainment is key in understanding temperature and moisture changes within the boundary layer, but it is difficult to observe using ground-based observations. This work used simulations to verify an assumption that simplifies entrainment estimations from ground-based observational data, recognizing that entrainment is the combination of the transfer of heat and moisture from above the boundary layer into it and the change in concentration of heat and moisture as boundary layer depth changes.
Giulia Roccetti, Luca Bugliaro, Felix Gödde, Claudia Emde, Ulrich Hamann, Mihail Manev, Michael Fritz Sterzik, and Cedric Wehrum
Atmos. Meas. Tech., 17, 6025–6046, https://doi.org/10.5194/amt-17-6025-2024, https://doi.org/10.5194/amt-17-6025-2024, 2024
Short summary
Short summary
The amount of sunlight reflected by the Earth’s surface (albedo) is vital for the Earth's radiative system. While satellite instruments offer detailed spatial and temporal albedo maps, they only cover seven wavelength bands. We generate albedo maps that fully span the visible and near-infrared range using a machine learning algorithm. These maps reveal how the reflectivity of different land surfaces varies throughout the year. Our dataset enhances the understanding of the Earth's energy balance.
Ollie Lewis, Chris Brunt, Malcolm Kitchen, Neill E. Bowler, and Edmund K. Stone
EGUsphere, https://doi.org/10.5194/egusphere-2024-2273, https://doi.org/10.5194/egusphere-2024-2273, 2024
Short summary
Short summary
Humidity observations are crucial for an accurate weather forecast. We propose a new way to measure humidity by measuring how radio signals from commercial aircraft are refracted by the atmosphere. Humidity affects the refractive index of air, allowing its presence to be detected. With thousands of flights in the airspace over the United Kingdom every day, there is the potential for a large increase in the number of humidity measurements for use in weather forecasting models.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Suyoung Sim, Sungwon Choi, Daeseong Jung, Jongho Woo, Nayeon Kim, Sungwoo Park, Honghee Kim, Ukkyo Jeong, Hyunkee Hong, and Kyung-Soo Han
Atmos. Meas. Tech., 17, 5601–5618, https://doi.org/10.5194/amt-17-5601-2024, https://doi.org/10.5194/amt-17-5601-2024, 2024
Short summary
Short summary
This study evaluates the use of background surface reflectance (BSR) derived from a semi-empirical bidirectional reflectance distribution function (BRDF) model based on GEMS satellite images. Analysis shows that BSR provides improved accuracy and stability compared to Lambertian-equivalent reflectivity (LER). These results indicate that BSR can significantly enhance climate analysis and air quality monitoring, making it a promising tool for accurate environmental satellite applications.
Daniel Durbin, Yadong Wang, and Pao-Liang Chang
Atmos. Meas. Tech., 17, 5397–5411, https://doi.org/10.5194/amt-17-5397-2024, https://doi.org/10.5194/amt-17-5397-2024, 2024
Short summary
Short summary
A method for determining drop size distributions (DSDs) for rain using radar measurements from two frequencies at two polarizations is presented. Following some preprocessing and quality control, radar measurements are incorporated into a model that uses swarm intelligence to seek the most suitable DSD to produce the input measurements.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024, https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Short summary
We analyze simulated polarization observations over snow to investigate the capabilities of remote sensing to determine surface and atmospheric properties in snow-covered regions. Polarization measurements are demonstrated to aid in the determination of snow grain shape, ice crystal roughness, and the vertical distribution of impurities in the snow–atmosphere system, data that are critical for estimating snow albedo for use in climate models.
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024, https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
Short summary
A symmetric error model built by symmetric rain rates handles the non-Gaussian error structure of the reflectivity error. The accuracy and linearization of rain rates can further improve the Gaussianity.
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024, https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Short summary
We study how the spectral characteristics of a solid-state laser in an atmospheric temperature profiling lidar using the Raman technique impact the temperature retrieval accuracy. We find that the spectral widening, with respect to a seeded laser, has virtually no impact, while crystal-rod temperature variations in the laser must be kept within a range of 1 K for the uncertainty in the atmospheric temperature below 1 K. The study is carried out through spectroscopy simulations.
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024, https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
Short summary
Imagine you want to determine how quickly the pitch of a passing ambulance’s siren changes. If the vehicle is traveling slowly, the pitch changes only slightly, but if it is traveling fast, the pitch also changes rapidly. In a similar way, the wind in the middle atmosphere modulates the wavelength of atmospheric gravity waves. We have investigated the question of how strong the maximum wind may be so that the change in wavelength can still be determined with the help of wavelet transformation.
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024, https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary
Short summary
Non-linearity (NL) correction is a critical procedure to guarantee that the calibration accuracy of a spaceborne sensor approaches a reasonable level. Different from the classical method, a new NL correction method for a spaceborne Fourier transform spectrometer is proposed. To overcome the inaccurate linear coefficient from two-point calibration influencing NL correction, an iteration algorithm is established that is suitable for NL correction of both infrared and microwave sensors.
Yuanxin Pan, Grzegorz Kłopotek, Laura Crocetti, Rudi Weinacker, Tobias Sturn, Linda See, Galina Dick, Gregor Möller, Markus Rothacher, Ian McCallum, Vicente Navarro, and Benedikt Soja
Atmos. Meas. Tech., 17, 4303–4316, https://doi.org/10.5194/amt-17-4303-2024, https://doi.org/10.5194/amt-17-4303-2024, 2024
Short summary
Short summary
Crowdsourced smartphone GNSS data were processed with a dedicated data processing pipeline and could produce millimeter-level accurate estimates of zenith total delay (ZTD) – a critical atmospheric variable. This breakthrough not only demonstrates the feasibility of using ubiquitous devices for high-precision atmospheric monitoring but also underscores the potential for a global, cost-effective tropospheric monitoring network.
Almudena Velázquez Blázquez, Edward Baudrez, Nicolas Clerbaux, and Carlos Domenech
Atmos. Meas. Tech., 17, 4245–4256, https://doi.org/10.5194/amt-17-4245-2024, https://doi.org/10.5194/amt-17-4245-2024, 2024
Short summary
Short summary
The Broadband Radiometer measures shortwave and total-wave radiances filtered by the spectral response of the instrument. To obtain unfiltered solar and thermal radiances, the effect of the spectral response needs to be corrected for, done within the BM-RAD processor. Errors in the unfiltering are propagated into fluxes; thus, accurate unfiltering is required for their proper estimation (within BMA-FLX). Unfiltering errors are estimated to be <0.5 % for the shortwave and <0.1 % for the longwave.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Cited articles
Ač, A., Malenovský, Z., Olejníčková, J., Gallé, A., Rascher, U., and Mohammed, G.: Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress, Remote Sens. Environ., 168, 420–436, https://doi.org/10.1016/j.rse.2015.07.022, 2015.
Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model: procedures, data sources and analysis, NOAA Tech. Memo. NESDIS NGDC 24, National Geophysical Data Center, https://doi.org/10.7289/V5C8276M, 2009.
Berk, A., Bernstein, L. S., Anderson, G. P., Acharya, P. K., Robertson, D. C., Chetwynd, J. H., and Adler-Golden, S. M.: MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS, Remote Sens. Environ., 65, 367–375, https://doi.org/10.1016/S0034-4257(98)00045-5, 1998.
Berk, A., Acharya, P. K., Bernstein, L. S., Anderson, G. P., Jr, J. H. C., and Hoke, M. L.: Reformulation of the MODTRAN band model for higher spectral resolution, in: Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, 190–198, https://doi.org/10.1117/12.410340, 2000.
Clark, R. N. and Swayze, G. A.: Automated spectral analysis – mapping minerals, amorphous materials, environmental materials, vegetation, water, ice and snow, and other materials: the USGS Tricorder algorithm, in: Proceedings of the 26th Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 1995, 255–256, https://ui.adsabs.harvard.edu/abs/1995LPI....26..255C (last access: 5 August 2025), 1995.
Coppo, P., Taiti, A., Pettinato, L., Francois, M., Taccola, M., and Drusch, M.: Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission, Remote Sens., 9, 649, https://doi.org/10.3390/rs9070649, 2017.
Damm, A., Erler, A., Hillen, W., Meroni, M., Schaepman, M. E., Verhoef, W., and Rascher, U.: Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence, Remote Sens. Environ., 115, 1882–1892, https://doi.org/10.1016/j.rse.2011.03.011, 2011.
Daumard, F., Champagne, S., Fournier, A., Goulas, Y., Ounis, A., Hanocq, J.-F., and Moya, I.: A Field Platform for Continuous Measurement of Canopy Fluorescence, IEEE T. Geosci. Remote Sens., 48, 3358–3368, https://doi.org/10.1109/TGRS.2010.2046420, 2010.
Dechant, B., Ryu, Y., Badgley, G., Köhler, P., Rascher, U., Migliavacca, M., Zhang, Y., Tagliabue, G., Guan, K., Rossini, M., Goulas, Y., Zeng, Y., Frankenberg, C., and Berry, J. A.: NIRVP: A robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales, Remote Sens. Environ., 268, 112763, https://doi.org/10.1016/j.rse.2021.112763, 2022.
Du, S., Liu, L., Liu, X., Zhang, X., Zhang, X., Bi, Y., and Zhang, L.: Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite, Sci. Bull., 63, 1502–1512, https://doi.org/10.1016/j.scib.2018.10.003, 2018.
Du, S., Liu, L., Liu, X., Zhang, X., Gao, X., and Wang, W.: The Solar-Induced Chlorophyll Fluorescence Imaging Spectrometer (SIFIS) Onboard the First Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1): Specifications and Prospects, Sensors, 20, 815, https://doi.org/10.3390/s20030815, 2020.
Du, S., Liu, X., Chen, J., and Liu, L.: Prospects for Solar-Induced Chlorophyll Fluorescence Remote Sensing from the SIFIS Payload Onboard the TECIS-1 Satellite, J. Remote Sens., 2022, 9845432, https://doi.org/10.34133/2022/9845432, 2022.
Frankenberg, C., Butz, A., and Toon, G. C.: Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light, Geophys. Res. Lett., 38, L03801, https://doi.org/10.1029/2010GL045896, 2011a.
Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., Toon, G. C., Butz, A., Jung, M., Kuze, A., and Yokota, T.: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity, Geophys. Res. Lett., 38, L17706, https://doi.org/10.1029/2011GL048738, 2011b.
Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., and Taylor, T. E.: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2, Remote Sens. Environ., 147, 1–12, https://doi.org/10.1016/j.rse.2014.02.007, 2014a.
Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., and Taylor, T. E.: Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2, Remote Sens. Environ., 147, 1–12, https://doi.org/10.1016/j.rse.2014.02.007, 2014b.
Guanter, L., Alonso, L., Gómez-Chova, L., Meroni, M., Preusker,R., Fischer, J., and Moreno, J.: Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands, J. Geophys. Res.-Atmos., 115, D19303, https://doi.org/10.1029/2009JD013716, 2010.
Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J., Kuze, A., Suto, H., and Grainger, R. G.: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements, Remote Sens. Environ., 121, 236–251, https://doi.org/10.1016/j.rse.2012.02.006, 2012.
Guanter, L., Rossini, M., Colombo, R., Meroni, M., Frankenberg, C., Lee, J.-E., and Joiner, J.: Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space, Remote Sens. Environ., 133, 52–61, https://doi.org/10.1016/j.rse.2013.01.017, 2013.
Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., Frankenberg, C., Huete, A. R., Zarco-Tejada, P., Lee, J.-E., Moran, M. S., Ponce-Campos, G., Beer, C., Camps-Valls, G., Buchmann, N., Gianelle, D., Klumpp, K., Cescatti, A., Baker, J. M., and Griffis, T. J.: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence, P. Natl. Acad. Sci. USA, 111, E1327–1333, https://doi.org/10.1073/pnas.1320008111, 2014.
Guanter, L., Aben, I., Tol, P., Krijger, J. M., Hollstein, A., Köhler, P., Damm, A., Joiner, J., Frankenberg, C., and Landgraf, J.: Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence, Atmos. Meas. Tech., 8, 1337–1352, https://doi.org/10.5194/amt-8-1337-2015, 2015.
Guanter, L., Bacour, C., Schneider, A., Aben, I., van Kempen, T. A., Maignan, F., Retscher, C., Köhler, P., Frankenberg, C., Joiner, J., and Zhang, Y.: The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission, Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, 2021.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195–213, https://doi.org/10.1016/S0034-4257(02)00096-2, 2002.
Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.: The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515–3556, https://doi.org/10.5194/acp-19-3515-2019, 2019.
Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., and Middleton, E. M.: First observations of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeosciences, 8, 637–651, https://doi.org/10.5194/bg-8-637-2011, 2011.
Joiner, J., Yoshida, Y., Vasilkov, A. P., Middleton, E. M., Campbell, P. K. E., Yoshida, Y., Kuze, A., and Corp, L. A.: Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT, Atmos. Meas. Tech., 5, 809–829, https://doi.org/10.5194/amt-5-809-2012, 2012.
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013.
Joiner, J., Yoshida, Y., Guanter, L., and Middleton, E. M.: New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY, Atmos. Meas. Tech., 9, 3939–3967, https://doi.org/10.5194/amt-9-3939-2016, 2016.
Köhler, P., Guanter, L., and Joiner, J.: A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data, Atmos. Meas. Tech., 8, 2589–2608, https://doi.org/10.5194/amt-8-2589-2015, 2015a.
Köhler, P., Guanter, L., and Frankenberg, C.: Simplified physically based retrieval of sun-induced chlorophyll fluorescence from GOSAT data, IEEE Geosci. Remote Sens. Lett., 12, 1446–1450, https://doi.org/10.1109/LGRS.2015.2407051, 2015b.
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., and Landgraf, J.: Global Retrievals of Solar-Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO-2, https://doi.org/10.1029/2018GL079031, 2018.
Liu, L., Liu, X., Hu, J., and Guan, L.: Assessing the wavelength-dependent ability of solar-induced chlorophyll fluorescence to estimate the GPP of winter wheat at the canopy level, Int. J. Remote Sens., 38, 4396–4417, https://doi.org/10.1080/01431161.2017.1320449, 2017.
Liu, X. and Liu, L.: Assessing Band Sensitivity to Atmospheric Radiation Transfer for Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence, Remote Sens., 6, 10656–10675, https://doi.org/10.3390/rs61110656, 2014.
Li, X. and Xiao, J.: A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data, Remote Sens., 11, 517, https://doi.org/10.3390/rs11050517, 2019.
Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol, C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovský, Z., Gastellu-Etchegorry, J.-P., Miller, J. R., Guanter, L., Moreno, J., Moya, I., Berry, J. A., Frankenberg, C., and Zarco-Tejada, P. J.: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress, Remote Sens. Environ., 231, 111177, https://doi.org/10.1016/j.rse.2019.04.030, 2019.
Riggs, G., Hall, D., and Salomonson, V.: MODIS Snow products user guide to collection 5, Digital Media, 6, 80 pp., https://nsidc.org/data/modis/data_summaries (last access: 5 August 2025), 2006.
Salomonson, V. V. and Appel, I.: Estimating fractional snow cover from MODIS using the normalized difference snow index, Remote Sens. Environ., 89, 351–360, https://doi.org/10.1016/j.rse.2003.10.016, 2004.
Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D. S., Jung, M., Guanter, L., Drewry, D. T., Verma, M., Porcar-Castell, A., Griffis, T. J., Gu, L., Magney, T. S., Köhler, P., Evans, B., and Yuen, K.: OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence, Science, 358, eaam5747, https://doi.org/10.1126/science.aam5747, 2017.
Taylor, T. E., Eldering, A., Merrelli, A., Kiel, M., Somkuti, P., Cheng, C., Rosenberg, R., Fisher, B., Crisp, D., Basilio, R., Bennett, M., Cervantes, D., Chang, A., Dang, L., Frankenberg, C., Haemmerle, V. R., Keller, G. R., Kurosu, T., Laughner, J. L., Lee, R., Marchetti, Y., Nelson, R. R., O'Dell, C. W., Osterman, G., Pavlick, R., Roehl, C., Schneider, R., Spiers, G., To, C., Wells, C., Wennberg, P. O., Yelamanchili, A., and Yu, S.: OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals, Remote Sens. Environ., 251, 112032, https://doi.org/10.1016/j.rse.2020.112032, 2020.
van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., and Su, Z.: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance, Biogeosciences, 6, 3109–3129, https://doi.org/10.5194/bg-6-3109-2009, 2009.
Vasilkov, A., Joiner, J., and Spurr, R.: Note on rotational-Raman scattering in the O2 A- and B-bands, Atmos. Meas. Tech., 6, 981–990, https://doi.org/10.5194/amt-6-981-2013, 2013.
Verhoef, W. and Bach, H.: Simulation of Sentinel-3 images by four-stream surface–atmosphere radiative transfer modeling in the optical and thermal domains, Remote Sens. Environ., 120, 197–207, https://doi.org/10.1016/j.rse.2011.10.034, 2012.
Verhoef, W., van der Tol, C., and Middleton, E. M.: Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX – Sentinel-3 tandem mission multi-sensor data, Remote Sens. Environ., 204, 942–963, https://doi.org/10.1016/j.rse.2017.08.006, 2018.
Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G. P. W., and Moreno, J.: Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review, ISPRS J. Photogramm. Remote Sens., 108, 273–290, https://doi.org/10.1016/j.isprsjprs.2015.05.005, 2015.
Vicent, J., Sabater, N., Tenjo, C., Acarreta, J. R., Manzano, M., Rivera, J. P., Jurado, P., Franco, R., Alonso, L., Verrelst, J., and Moreno, J.: FLEX End-to-End Mission Performance Simulator, IEEE T. Geosci. Remote Sens., 54, 4215–4223, https://doi.org/10.1109/TGRS.2016.2538300, 2016.
Xu, S., Liu, Z., Zhao, L., Zhao, H., and Ren, S.: Diurnal Response of Sun-Induced Fluorescence and PRI to Water Stress in Maize Using a Near-Surface Remote Sensing Platform, Remote Sens., 10, 1510, https://doi.org/10.3390/rs10101510, 2018.
Zhao, D., Du, S., Zou, C., Tian, L., Fan, M., Du, Y., and Liu, L.: TanSat-2 SIF retrieval (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.16749197, 2025.
Zhao, F., Ma, W., Köhler, P., Ma, X., Sun, H., Verhoef, W., Zhao, J., Huang, Y., Li, Z., and Ratul, A. K.: Retrieval of Red Solar-Induced Chlorophyll Fluorescence With TROPOMI on the Sentinel-5 Precursor Mission, IEEE T. Geosci. Remote Sens., 60, 1–14, https://doi.org/10.1109/TGRS.2022.3162726, 2022a.
Zhao, F., Ma, W., Köhler, P., Ma, X., Sun, H., Verhoef, W., Zhao, J., Huang, Y., Li, Z., and Ratul, A. K.: Retrieval of Red Solar-Induced Chlorophyll Fluorescence With TROPOMI on the Sentinel-5 Precursor Mission, IEEE T. Geosci. Remote Sens., 60, 1–14, https://doi.org/10.1109/TGRS.2022.3162726, 2022b.
Zheng, X., Zhao, W., Zhu, Z., Wang, Z., Zheng, Y., and Li, D.: Characterization and Evaluation of Global Solar-Induced Chlorophyll Fluorescence Products: Estimation of Gross Primary Productivity and Phenology, J. Remote Sens., 4, 0173, https://doi.org/10.34133/remotesensing.0173, 2024.
Zou, C., Du, S., Liu, X., Liu, L., Wang, Y., and Li, Z.: Optimizing the Empirical Parameters of the Data-Driven Algorithm for SIF Retrieval for SIFIS Onboard TECIS-1 Satellite, Sensors, 21, 3482, https://doi.org/10.3390/s21103482, 2021.
Zou, C., Liu, L., Du, S., and Liu, X.: Investigating the Potential Accuracy of Spaceborne Solar-Induced Chlorophyll Fluorescence Retrieval for 12 Capable Satellites Based on Simulation Data, IEEE T. Geosci. Remote Sens., 60, 1–13, https://doi.org/10.1109/TGRS.2022.3210185, 2022.
Short summary
TanSat-2 is designed for global carbon monitoring, offering high-resolution dual-band observations of solar-induced chlorophyll fluorescence – a key indicator of photosynthesis. Simulations show its data processing can retrieve fluorescence with high accuracy. These results suggest TanSat-2 will enhance global tracking of the carbon cycle and vegetation health, providing valuable insights for climate change research.
TanSat-2 is designed for global carbon monitoring, offering high-resolution dual-band...