Articles | Volume 18, issue 16
https://doi.org/10.5194/amt-18-4025-2025
https://doi.org/10.5194/amt-18-4025-2025
Research article
 | 
27 Aug 2025
Research article |  | 27 Aug 2025

A machine-learning-based marine atmosphere boundary layer (MABL) moisture profile retrieval product from GNSS-RO deep refraction signals

Jie Gong, Dong L. Wu, Michelle Badalov, Manisha Ganeshan, and Minghua Zheng

Related authors

Exploring commercial Global Navigation Satellite System (GNSS) radio occultation (RO) products for planetary boundary layer studies in the Arctic
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025,https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
GNSS-RO residual ionospheric error (RIE): a new method and assessment
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025,https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
The first global 883 GHz cloud ice survey: IceCube Level 1 data calibration, processing and analysis
Jie Gong, Dong L. Wu, and Patrick Eriksson
Earth Syst. Sci. Data, 13, 5369–5387, https://doi.org/10.5194/essd-13-5369-2021,https://doi.org/10.5194/essd-13-5369-2021, 2021
Short summary
Linkage among ice crystal microphysics, mesoscale dynamics, and cloud and precipitation structures revealed by collocated microwave radiometer and multifrequency radar observations
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020,https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary

Cited articles

Boisvert, L. N., Wu, D. L., Vihma,T., Susskind, J.: Verification of air/surface humidity differences from AIRS and ERA-Interim in support of turbulent flux estimation in the Arctic, J. Geophys. Res., 120, 945–963, https://doi.org/10.1002/2014JD021666, 2015. a, b
Chang, H., Lee, J., Yoon, H., Morton, Y. J., and Saltman, A.: Performance assessment of radio occultation data from GeoOptics by comparing with COSMIC data, Earth Planets Space, 74, 108, https://doi.org/10.1186/s40623-022-01667-6, 2022. a
Chepfer, H., Brogniez, H., and Noel, V.: Diurnal variations of cloud and relative humidity profiles across the tropics, Sci. Rep., 9, 16045, https://doi.org/10.1038/s41598-019-52437-6, 2019. a
Cobb, A., Michaelis, A., Iacobellis, S., Ralph, F. M., and Delle Monache, L.: Atmospheric River Sectors: definition and characteristics observed using dropsondes from 2014-20 CalWater and AR Recon, Mon. Weather Rev., 149, 623–644, https://doi.org/10.1175/MWR-D-20-0177.1, 2021. a
D'Alessandro, J. J., McFarquhar, G. M., Wu, W., Stith, J. L., Jensen, J. B., and Rauber, R. M.: Characterizing the Occurrence and Spatial Heterogeneity of Liquid, Ice, and Mixed Phase Low-Level Clouds Over the Southern Ocean Using in Situ Observations Acquired During SOCRATES, J. Geophys. Res., 126, e2020JD034482, https://doi.org/10.1029/2020JD034482, 2021. a
Download
Short summary
Marine boundary layer (MABL) water vapor is among the key factors to couple the ocean and atmosphere, but it is also among the hardest to retrieve from a satellite remote sensing perspective. Here we propose a novel way to retrieve MABL specific humidity profiles using the GNSS (Global Navigation Satellite System) Level-1 signal-to-noise ratio. Using a machine learning approach, we successfully obtained a retrieval product that outperforms the ERA-5 reanalysis and operational Level-2 retrievals globally, except in the deep tropics.
Share