Articles | Volume 18, issue 18
https://doi.org/10.5194/amt-18-4755-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-4755-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of the performance between three Doppler wind lidars and a novel wind speed correction algorithm
Yidan Zhang
Key Laboratory of Atmospheric Sounding, College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
Hancheng Hu
College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
Yuan Li
Key Laboratory of Atmospheric Sounding, College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
Mengqi Liu
Key Laboratory of Atmospheric Sounding, College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
Fugui Zhang
Key Laboratory of Atmospheric Sounding, College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
Huilian She
Key Laboratory of Atmospheric Sounding, College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
Hao Wu
CORRESPONDING AUTHOR
Key Laboratory of Atmospheric Sounding, College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, China
Related authors
Hancheng Hu, Yidan Zhang, Yuting Li, Dongyang Pu, and Hao Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3637, https://doi.org/10.5194/egusphere-2025-3637, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
New particle formation is a major source of atmospheric particulate matter. Although the planetary boundary layer can influence NPF, related studies remain limited. This study focuses on observations of new particle formation events and planetary boundary layer height in Beijing, Guangzhou, and Shanghai, aiming to investigate the relationship between them.
Hancheng Hu, Yidan Zhang, Yuting Li, Dongyang Pu, and Hao Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3637, https://doi.org/10.5194/egusphere-2025-3637, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
New particle formation is a major source of atmospheric particulate matter. Although the planetary boundary layer can influence NPF, related studies remain limited. This study focuses on observations of new particle formation events and planetary boundary layer height in Beijing, Guangzhou, and Shanghai, aiming to investigate the relationship between them.
Cited articles
Abdunabiev, S., Musacchio, C., Merlone, A., Paredes, M., Pasero, E., and Tordella, D.: Validation and traceability of miniaturized multi-parameter cluster radiosondes used for atmospheric observations, Measurement, 224, https://doi.org/10.1016/j.measurement.2023.113879, 2024.
Belova, E., Kirkwood, S., Voelger, P., Chatterjee, S., Satheesan, K., Hagelin, S., Lindskog, M., and Körnich, H.: Validation of Aeolus winds using ground-based radars in Antarctica and in northern Sweden, Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021, 2021.
Borne, M., Knippertz, P., Weissmann, M., Witschas, B., Flamant, C., Rios-Berrios, R., and Veals, P.: Validation of Aeolus L2B products over the tropical Atlantic using radiosondes, Atmos. Meas. Tech., 17, 561–581, https://doi.org/10.5194/amt-17-561-2024, 2024.
Boulesteix, A.-L., Bender, A., Lorenzo Bermejo, J., and Strobl, C.: Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations, Briefings in Bioinformatics, 13, 292–304, https://doi.org/10.1093/bib/bbr053, 2011.
Chanin, M. L., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler lidar for measuring winds in the middle atmosphere, Geophysical Research Letters, 16, 1273–1276, https://doi.org/10.1029/GL016i011p01273, 1989.
Chen, S., Cao, R., Xie, Y., Zhang, Y., Tan, W., Chen, H., Guo, P., and Zhao, P.: Study of the seasonal variation in Aeolus wind product performance over China using ERA5 and radiosonde data, Atmos. Chem. Phys., 21, 11489–11504, https://doi.org/10.5194/acp-21-11489-2021, 2021.
Cutler, A., Cutler, D. R., and Stevens, J. R.: Random Forests, in: Ensemble Machine Learning, edited by: Zhang, C., and Ma, Y., Springer, New York, NY., 157–175, https://doi.org/10.1007/978-1-4419-9326-7_5, 2012.
Du, L.-F., Yang, G.-T., Wang, J.-H., Yue, C., and Chen, L.-X.: Implementing a wind measurement Doppler Lidar based on a molecular iodine filter to monitor the atmospheric wind field over Beijing, Journal of Quantitative Spectroscopy and Radiative Transfer, 188, 3–11, https://doi.org/10.1016/j.jqsrt.2016.07.013, 2017.
Fahua, S., Peng, Z., Bangxin, W., Chenbo, X., Chengqun, Q., Dong, L., and Yingjian, W.: Research on Retrieval Method of Low-Altitude Wind Field for Rayleigh-Mie Scattering Doppler Lidar, Chinese Journal of Lasers, 48, https://doi.org/10.3788/cjl202148.1110005, 2021.
Flament, T., Trapon, D., Lacour, A., Dabas, A., Ehlers, F., and Huber, D.: Aeolus L2A aerosol optical properties product: standard correct algorithm and Mie correct algorithm, Atmos. Meas. Tech., 14, 7851–7871, https://doi.org/10.5194/amt-14-7851-2021, 2021.
Ge, X., Chen, S., Zhang, Y., Chen, H., Guo, P., Mu, T., and Yang, J.: Telescope design for 2μm spacebased coherent wind lidar system, Optics Communications, 315, 238–242, https://doi.org/10.1016/j.optcom.2013.11.020, 2014.
Grimm, R., Behrens, T., Märker, M., and Elsenbeer, H.: Soil organic carbon concentrations and stocks on Barro Colorado Island – Digital soil mapping using Random Forests analysis, Geoderma, 146, 102–113, https://doi.org/10.1016/j.geoderma.2008.05.008, 2008.
Guo, J., Liu, B., Gong, W., Shi, L., Zhang, Y., Ma, Y., Zhang, J., Chen, T., Bai, K., Stoffelen, A., de Leeuw, G., and Xu, X.: Technical note: First comparison of wind observations from ESA's satellite mission Aeolus and ground-based radar wind profiler network of China, Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, 2021.
Gupta, T., Gandhi, T. K., Gupta, R. K., and Panigrahi, B. K.: Classification of patients with tumor using MR FLAIR images, Pattern Recognition Letters, 139, 112–117, https://doi.org/10.1016/j.patrec.2017.10.037, 2020.
Harvey, N. J., Hogan, R. J., and Dacre, H. F.: Evaluation of boundary-layer type in a weather forecast model utilizing long-term Doppler lidar observations, Quarterly Journal of the Royal Meteorological Society, 141, 1345–1353, https://doi.org/10.1002/qj.2444, 2015.
Hastie, T., Tibshirani, R., and Friedman, J.: Random Forests, in: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, edited by: Hastie, T., Tibshirani, R., and Friedman, J., Springer New York, New York, NY, 587–604, https://doi.org/10.1007/978-0-387-84858-7_15, 2009.
He, J. Y., Chan, P. W., Li, Q. S., and Lee, C. W.: Characterizing coastal wind energy resources based on sodar and microwave radiometer observations, Renewable and Sustainable Energy Reviews, 163, https://doi.org/10.1016/j.rser.2022.112498, 2022a.
He, Y., Yuan, C., Ren, C., and Ng, E.: Urban ventilation assessment with improved vertical wind profile in high-density cities – Comparisons between LiDAR and conventional methods, Journal of Wind Engineering and Industrial Aerodynamics, 228, https://doi.org/10.1016/j.jweia.2022.105116, 2022b.
Hernandez-Mejia, J. L., Imhof, M., and Pyrcz, M. J.: Anomaly detection for geological carbon sequestration monitoring, International Journal of Greenhouse Gas Control, 136, https://doi.org/10.1016/j.ijggc.2024.104188, 2024.
Horemans, J. A., Janssens, I. A., Gielen, B., Roland, M., Deckmyn, G., Verstraeten, A., Neirynck, J., and Ceulemans, R.: Weather, pollution and biotic factors drive net forest – atmosphere exchange of CO2 at different temporal scales in a temperate-zone mixed forest, Agricultural and Forest Meteorology, 291, https://doi.org/10.1016/j.agrformet.2020.108059, 2020.
Huang, T., Yang, Y., O'Connor, E. J., Lolli, S., Haywood, J., Osborne, M., Cheng, J. C., Guo, J., and Yim, S. H.: Influence of a weak typhoon on the vertical distribution of air pollution in Hong Kong: A perspective from a Doppler LiDAR network, Environ Pollut, 276, 116534, https://doi.org/10.1016/j.envpol.2021.116534, 2021.
Jurasovic, K. and Kusek, M.: Genetic algorithm for optimizing service distributions, Neurocomputing, 73, 661–668, https://doi.org/10.1016/j.neucom.2009.09.019, 2010.
Kim, M.-H., Yeo, H., Park, S., Park, D.-H., Omar, A., Nishizawa, T., Shimizu, A., and Kim, S.-W.: Assessing CALIOP-Derived Planetary Boundary Layer Height Using Ground-Based Lidar, Remote Sensing, 13, https://doi.org/10.3390/rs13081496, 2021.
Komsta, Ł.: A new general equation for retention modeling from the organic modifier content of the mobile phase, Acta Chromatographica, 22, 267–279, https://doi.org/10.1556/AChrom.22.2010.2.9, 2010.
Li, J. and Yu, X.: Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis, Energy, 147, 1092–1107, https://doi.org/10.1016/j.energy.2018.01.118, 2018.
Li, X., Liu, M., Wang, K., Liu, Z., and Li, G.: Data cleaning method for the process of acid production with flue gas based on improved random forest, Chinese Journal of Chemical Engineering, 59, 72–84, https://doi.org/10.1016/j.cjche.2022.12.013, 2023.
Lin, Q., Bao, X., and Li, C.: Deep learning based missing data recovery of non-stationary wind velocity, Journal of Wind Engineering and Industrial Aerodynamics, 224, https://doi.org/10.1016/j.jweia.2022.104962, 2022.
Liu, Y., Tang, Y., Hua, S., Luo, R., & Zhu, Q. : Features of the Cloud Base Height and Determining the Threshold of Relative Humidity over Southeast China, Remote Sensing, 11, 2900, https://doi.org/10.3390/rs11242900, 2019.
Liu, F. T., Ting, K. M., and Zhou, Z. H.: Isolation Forest, 2008 Eighth IEEE International Conference on Data Mining, 15–19 December 2008, 413–422, https://doi.org/10.1109/ICDM.2008.17, 2008.
Liu, X. and Aldrich, C.: Froth image based monitoring of platinum group metals flotation with vision transformers and convolutional neural networks, Minerals Engineering, 215, https://doi.org/10.1016/j.mineng.2024.108790, 2024.
Liu, X., Zhang, H., Wu, S., Wang, Q., He, Z., Zhang, J., Li, R., Liu, S., and Zhang, X.: Effects of buildings on wind shear at the airport: Field measurement by coherent Doppler lidar, Journal of Wind Engineering and Industrial Aerodynamics, 230, https://doi.org/10.1016/j.jweia.2022.105194, 2022.
Liu, Z., Barlow, J. F., Chan, P.-W., Fung, J. C. H., Li, Y., Ren, C., Mak, H. W. L., and Ng, E.: A Review of Progress and Applications of Pulsed Doppler Wind LiDARs, Remote Sensing, 11, https://doi.org/10.3390/rs11212522, 2019.
Lolli, S.: Machine Learning Techniques for Vertical Lidar-Based Detection, Characterization, and Classification of Aerosols and Clouds: A Comprehensive Survey, Remote Sensing, 15, https://doi.org/10.3390/rs15174318, 2023.
Lothon, M., Lenschow, D. H., and Mayor, S. D.: Doppler Lidar Measurements of Vertical Velocity Spectra in the Convective Planetary Boundary Layer, Boundary-Layer Meteorology, 132, 205–226, https://doi.org/10.1007/s10546-009-9398-y, 2009.
Maglevanny, I. I. and Smolar, V. A.: Robust sampling-sourced numerical retrieval algorithm for optical energy loss function based on log–log mesh optimization and local monotonicity preserving Steffen spline, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 367, 26–36, https://doi.org/10.1016/j.nimb.2015.11.010, 2016.
Malakouti, S. M.: Estimating the output power and wind speed with ML methods: A case study in Texas, Case Studies in Chemical and Environmental Engineering, 7, https://doi.org/10.1016/j.cscee.2023.100324, 2023.
Martin, A., Weissmann, M., Reitebuch, O., Rennie, M., Geiß, A., and Cress, A.: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents, Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, 2021.
Paul, B. and Das, A. K.: Spatial heterogeneity in boundary layer dynamism and PM2.5 surface concentration over the complex terrain of Brahmaputra valley, Remote Sensing Applications: Society and Environment, 28, https://doi.org/10.1016/j.rsase.2022.100828, 2022.
Rennie, M. P., Isaksen, L., Weiler, F., de Kloe, J., Kanitz, T., and Reitebuch, O.: The impact of Aeolus wind retrievals on ECMWF global weather forecasts, Quarterly Journal of the Royal Meteorological Society, 147, 3555–3586, https://doi.org/10.1002/qj.4142, 2021.
Sathe, A. and Mann, J.: A review of turbulence measurements using ground-based wind lidars, Atmos. Meas. Tech., 6, 3147–3167, https://doi.org/10.5194/amt-6-3147-2013, 2013.
Shun, C. M. and Chan, P. W.: Applications of an Infrared Doppler Lidar in Detection of Wind Shear, Journal of Atmospheric and Oceanic Technology, 25, 637–655, https://doi.org/10.1175/2007JTECHA1057.1, 2008.
Silva, D., Gonçalves, M., Bentamy, A., and Guedes Soares, C.: Assessment of the use of scatterometer wind data to force wave models in the North Atlantic Ocean, Ocean Engineering, 266, https://doi.org/10.1016/j.oceaneng.2022.112803, 2022.
Singh, P., Pandit, S., and Parthasarathi, R.: Predictive modeling approaches for the risk assessment of persistent organic pollutants (POPs): from QSAR to machine learning–based models, in: QSAR in Safety Evaluation and Risk Assessment, 77–87, https://doi.org/10.1016/b978-0-443-15339-6.00026-6, 2023.
Smalikho, I. and Banakh, V.: Method for retrieval of vertical profiles of wind from Stream Line lidar data with allowance that the noise component of recorded signal differs from white noise, Proc. SPIE 10035, 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 1003536, https://doi.org/10.1117/12.2248616, 2016.
Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15921–15935, https://doi.org/10.5194/acp-18-15921-2018, 2018.
Su, T., Li, Z., Li, C., Li, J., Han, W., Shen, C., Tan, W., Wei, J., and Guo, J.: The significant impact of aerosol vertical structure on lower atmosphere stability and its critical role in aerosol–planetary boundary layer (PBL) interactions, Atmos. Chem. Phys., 20, 3713–3724, https://doi.org/10.5194/acp-20-3713-2020, 2020.
Su, T., Zheng, Y., and Li, Z.: Methodology to determine the coupling of continental clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data, Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022, 2022.
Talianu, C., Nicolae, D., Ciuciu, J., Ciobanu, M., and Babin, V.: Planetary boundary layer height detection from LIDAR measurements, Journal of Optoelectronics and Advanced Materials, 8, 243, 2006.
Tan, L., Hou, H., Zheng, Q., Li, H., and Zhou, Y.: Performance comparison of Fabry-Perot and Mach-Zehnder interferometers for Doppler lidar based on double-edge technique, Optik, 181, 71–80, https://doi.org/10.1016/j.ijleo.2018.12.024, 2019.
Tavakol Sadrabadi, M. and Innocente, M. S.: Enhancing wildfire propagation model predictions using aerial swarm-based real-time wind measurements: A conceptual framework, Applied Mathematical Modelling, 130, 615–634, https://doi.org/10.1016/j.apm.2024.03.012, 2024.
Vassallo, D., Krishnamurthy, R., Sherman, T., and Fernando, H. J. S.: Analysis of Random Forest Modeling Strategies for Multi-Step Wind Speed Forecasting, Energies, 13, https://doi.org/10.3390/en13205488, 2020.
Wang, H., Sun, J., Sun, J., and Wang, J.: Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models, Energies, 10, https://doi.org/10.3390/en10101522, 2017.
Wang, J., Wang, L., Peng, P., Jiang, Y., Wu, J., and Liu, Y.: Efficient and accurate mapping method of underground metal mines using mobile mining equipment and solid-state lidar, Measurement, 221, https://doi.org/10.1016/j.measurement.2023.113581, 2023.
Wang, L., Qiang, W., Xia, H., Wei, T., Yuan, J., and Jiang, P.: Robust Solution for Boundary Layer Height Detections with Coherent Doppler Wind Lidar, Advances in Atmospheric Sciences, 38, 1920–1928, https://doi.org/10.1007/s00376-021-1068-0, 2021.
Weickmann, A. M., Senff, C. J., Tucker, S. C., Brewer, W. A., Banta, R. M., Sandberg, S. P., Law, D. C., and Hardesty, R. M.: Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles, Journal of Atmospheric and Oceanic Technology, 26, 673–688, https://doi.org/10.1175/2008jtecha1157.1, 2009.
Witschas, B., Lemmerz, C., Geiß, A., Lux, O., Marksteiner, U., Rahm, S., Reitebuch, O., and Weiler, F.: First validation of Aeolus wind observations by airborne Doppler wind lidar measurements, Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020, 2020.
Wu, J., Yao, F., Li, W., and Si, M.: VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing–Tianjin–Hebei: A spatiotemporal statistical model, Remote Sensing of Environment, 184, 316–328, https://doi.org/10.1016/j.rse.2016.07.015, 2016.
Xu, J., Ma, J., and Tao, S.: Examining the nonlinear relationship between neighborhood environment and residents' health, Cities, 152, https://doi.org/10.1016/j.cities.2024.105213, 2024.
Yamartino, R. J.: A Comparison of Several “Single-Pass” Estimators of the Standard Deviation of Wind Direction, Journal of Applied Meteorology and Climatology, 23, 1362–1366, https://doi.org/10.1175/1520-0450(1984)023<1362:ACOSPE>2.0.CO;2, 1984.
Yang, S., Peng, F., von Löwis, S., Petersen, G. N., and Finger, D. C.: Using Machine Learning Methods to Identify Particle Types from Doppler Lidar Measurements in Iceland, Remote Sensing, 13, https://doi.org/10.3390/rs13132433, 2021.
Zhang, Y.: Performance Comparison and Wind Speed Correction Algorithm for Three Lidar Wind Profilers, V1, Mendeley Data [dataset], https://doi.org/10.17632/s7rjpshdpm.1, 2025.
Zhao, L., Wang, Z., Ma, Z., and Li, Y.: An On-line SOH estimation method for power battery under low sampling rate, Journal of Energy Storage, 83, https://doi.org/10.1016/j.est.2024.110695, 2024a.
Zhao, X., Sun, B., Wu, N., Zeng, R., Geng, R., and He, Z.: A new short-term wind power prediction methodology based on linear and nonlinear hybrid models, Computers & Industrial Engineering, 196, https://doi.org/10.1016/j.cie.2024.110477, 2024b.
Short summary
This study advances the field of low altitude wind field detection by systematically evaluating Doppler wind lidar performance against in situ balloon radiosonde under complex atmospheric conditions. We propose a novel machine learning framework for wind profile correction and the Aeolus satellite is used to verify the reliability of the algorithm further to enhance data reliability in meteorological remote sensing.
This study advances the field of low altitude wind field detection by systematically evaluating...