Articles | Volume 18, issue 18
https://doi.org/10.5194/amt-18-4885-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-4885-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Performance and evaluation of remote sensing satellites for monitoring dust weather in East Asia
Yuanyuan Zhang
School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
Ning Wang
Nanjing Xinda Institute of Meteorological Science & Technology, Nanjing, 210000, China
Shuanggen Jin
CORRESPONDING AUTHOR
School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, 200030, China
Cited articles
Ahn, C., Torres, O., Jethva, H., Tiruchirapalli, R., and Huang, L. K.: Evaluation of aerosol properties observed by DSCOVR/EPIC instrument from the Earth-Sun Lagrange 1 Orbit, J. Geophys. Res.-Atmos., 126, e2020JD033651, https://doi.org/10.1029/2020JD033651,2021.
Akhlaq, M., Sheltami. T. R., and Mouftah, H. T.: A review of techniques and technologies for sand and dust storm detection, Rev. Environ. Sci. Bio, 11, 305–322, https://doi.org/10.1007/s11157-012-9282-y, 2012.
Apituley, A., Pedergnana, M., Sneep, M., Veefkind, J. P., Loyola, D., and Zweers, D. S.: Sentinel-5 precursor/TROPOMI level 2 product user manual UV aerosol index, https://sentinels.copernicus.eu/documents/247904/2474726/ Sentinel-5P-Level-2-Product-User-Manual-Aerosol-Index-product (last access: 2 July 2025), 2022.
Bao, T., Xi, G., Hao, Y., Chang, I. S., Wu, J., Xue, Z., Jin, E., Zhang, W., and Bao, Y.: The Transport Path and Vertical Structure of Dust Storms in East Asia and the Impacts on Cities in Northern China, Remote Sens., 15, 3183, https://doi.org/10.3390/rs15123183, 2023.
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9 – Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. Jpn. Ser. II, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016.
Boiyo, R., Kumar, K. R., and Zhao, T.: Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination, Atmos. Environ., 177, 234–252, https://doi.org/10.1016/j.atmosenv.2018.01.018, 2018.
Çapraz, Ö. and Deniz, A.: Particulate matter (PM10 and PM2.5) concentrations during a Saharan dust episode in Istanbul, Air Qual. Atmos. Hlth., 14, 109–116, https://doi.org/10.1007/s11869-020-00917-4, 2021.
Chen, B., Zhang, P., Zhang, B., Jia, R., Zhang, Z., Wang, T., and Zhou, T.: An overview of passive and active dust detection methods using satellite measurements, J. Meteorol. Res.-PRC, 28, 1029–1040, https://doi.org/10.1007/s13351-014-4032-4, 2014.
Chimot, J., Veefkind, J. P., Vlemmix, T., de Haan, J. F., Amiridis, V., Proestakis, E., Marinou, E., and Levelt, P. F.: An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O2–O2 spectral band using a neural network approach, Atmos. Meas. Tech., 10, 783–809, https://doi.org/10.5194/amt-10-783-2017, 2017.
Dave, J. V. and Mateer, C. L.: A preliminary study on the possibility of estimating total atmospheric ozone from satellite measurements, J. Atmos. Sci., 24, 414–427, https://doi.org/10.1175/1520-0469(1967)024<0414:APSOTP>2.0.CO;2, 1967.
de Graaf, M., Stammes, P., Torres, O., and Koelemeijer, R. B. A.: Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS, J. Geophys. Res.-Atmos., 110, D10201, https://doi.org/10.1029/2004JD005178, 2005.
Duan, H., Guo, N., Huo, W., Qin, H., and Ma, Y.: The Comparison of the prediction efficiency of GRAPES-SDM dust-storm model and the satellite remote sensing monitoring, J. Desert Res., 34, 1617–1623, https://doi.org/10.7522/j.issn.1000-694X.2014.00012, 2014.
Fang, L., Wang, S., Yu, T., Gu, X., Zhang, X., Wang, W., and Ren, S.: Changes in aerosol optical and micro-physical properties over Northeast Asia from a severe dust storm in April 2014, Remote Sens., 8, 394, https://doi.org/10.3390/rs8050394, 2016.
Filonchyk, M.: Characteristics of the severe March 2021 Gobi Desert dust storm and its impact on air pollution in China, Chemosphere, 287, 132219, https://doi.org/10.1016/j.chemosphere.2021.132219, 2022.
Filonchyk, M., Hurynovich, V., Yan, H., and Yang, S.: Atmospheric pollution assessment near potential source of natural aerosols in the South Gobi Desert region, China, GIScience & Remote Sensing, 57, 227–244, https://doi.org/10.1080/15481603.2020.1715591, 2020.
Fioletov, V., McLinden, C. A., Griffin, D., Theys, N., Loyola, D. G., Hedelt, P., Krotkov, N. A., and Li, C.: Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: first results, Atmos. Chem. Phys., 20, 5591–5607, https://doi.org/10.5194/acp-20-5591-2020, 2020.
Fukuda, S., Nakajima, T., Takenaka, H., Higurashi, A., Kikuchi, N., Nakajima, T. Y., and Ishida, H.: New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager, J. Geophys. Res.-Atmos., 118, 520-531, https://doi.org/10.1002/2013JD020090, 2013.
Gao, H. and Washington, R.: Arctic oscillation and the interannual variability of dust emissions from the Tarim Basin: a TOMS AI based study, Clim. Dynam., 35, 511–522, https://doi.org/10.1007/s00382-009-0687-4, 2010.
Ge, B., Yang, L., Chen, X., Li, Z., Mei, X., and Liu, L.: Study on aerosol optical depth retrieval over land from Himawari-8 data based on dark target method, Natl. Remote Sens. Bull., 22, 38–50, https://doi.org/10.11834/jrs.20187033, 2018.
Go, S., Kim, J., Park, S. S, Kim, M., Lim, H., Kim, J., Lee, D., and Im, J.: Synergistic use of hyperspectral UV-visible OMI and broadband meteorological imager MODIS data for a merged aerosol product, Remote Sens., 12, 3987, https://doi.org/10.3390/rs12233987, 2020.
Gui, L., Tao, M., Wang, Y., Wang, L., Chen, L., Lin, C., Tao, J., Wang, J., and Yu, C.: Climatology of aerosol types and their vertical distribution over East Asia based on CALIPSO lidar measurements, Int. J. Climatol., 42, 6042–6054, https://doi.org/10.1002/joc.7599, 2022.
Hang, Y., Jiang, X., Yun, J., Yinana, and Liu, K.: Comparison and Analysis of Sand-Dust Weather Frequency Changes between Sand Sources and Downstream Areas in East Asia, Meteorol. Sci. Technol., 51, 499–509, https://doi.org/10.19517/j.1671-6345.20220173, 2023.
Hashimoto, M. and Nakajima, T.: Development of a remote sensing algorithm to retrieve atmospheric aerosol properties using multiwavelength and multipixel information, J. Geophys. Res.-Atmos., 122, 6347–6378, https://doi.org/10.1002/2016JD025698, 2017.
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and Celarier, E.: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res.-Atmos., 102, 16911–16922, https://doi.org/10.1029/96JD03680, 1997.
Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., Huang, J., and Tsay, S. C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation, J. Geophys. Res.-Atmos., 118, 9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.
Hu, X., Lu, N., and Zhang, P.: Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite, J. Appl. Meteorol. Sci., 18, 266–275, https://doi.org/10.3969/j.issn.1001-7313.2007.03.002, 2007.
Huang, J., Ge, J., and Weng, F.: Detection of Asia dust storms using multisensor satellite measurements, Remote Sens. Environ., 110, 186–191, https://doi.org/10.1016/j.rse.2007.02.022, 2007.
Huang, J., Lin, B., Minnis, P., Wang, T., Wang, X., Hu, Y., Yi, Y., and Ayers, J. K.: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia, Geophys. Res. Lett., 33, L19802, https://doi.org/10.1029/2006GL026561, 2006.
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust aerosols over East Asian arid and semiarid regions, J. Geophys. Res.-Atmos., 119, 398–416, https://doi.org/10.1002/2014JD021796, 2014.
Jia, R., Liu, Y., Hua, S., Zhu, Q., and Shao, T.: Estimation of the aerosol radiative effect over the Tibetan Plateau based on the latest CALIPSO product, J. Meteorol. Res.-PRC, 32, 707–722, https://doi.org/10.1007/s13351-018-8060-3, 2018.
Jiang, T., Chen, B., Chan, K .K. Y., and Xu B.: Himawari-8/AHI and MODIS aerosol optical depths in China: evaluation and comparison, Remote Sens., 11, 1011, https://doi.org/10.3390/rs11091011, 2019.
Jiang, Y., Gao, Y., He, C., Liu, B., Pan, Y., and Li, X.: Spatiotemporal distribution and variation of wind erosion over the Tibetan Plateau based on a coupled land-surface wind-erosion model, Aeolian. Res., 50, 100699, https://doi.org/10.1016/j.aeolia.2021.100699, 2021.
Kaufman, Y. J., Tanre, D., Remer, L. A., Vermote, E. F., Chu, A., and Holben, B. N.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res.-Atmos., 102, 17051–17067, https://doi.org/10.1029/2000GL012647, 1997.
Kaufman, Y. J., Tanré, D., Dubovik, O., Karnieli, A., and Remer, L. A.: Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing, Geophys. Res. Lett., 28, 1479–1482, https://doi.org/10.1029/2000GL012647, 2001.
Kikuchi, M., Murakami, H., Suzuki, K., Nagao, T. M., and Higurashi, A.: Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from Himawari-8 geostationary satellite, IEEE T. Geosci. Remote, 56, 3442–3455, https://doi.org/10.1109/TGRS.2018.2800060, 2018.
Kim, M.-H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., Hu, Y., Liu, Z., Poole, L. R., Pitts, M. C., Kar, J., and Magill, B. E.: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107–6135, https://doi.org/10.5194/amt-11-6107-2018, 2018.
Kok, J. F., Storelvmo, T., Karydis, V. A., Adebiyi, A. A., Mahowald, N. M., Evan, A. T., Evan, A. T., He, C., and Leung, D. M.: Mineral dust aerosol impacts on global climate and climate change, Nature Reviews Earth & Environment, 4, 71–86, https://doi.org/10.1038/s43017-022-00379-5, 2023.
Legrand, M., Plana-Fattori, A., and N'doumé, C.: Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index, J. Geophys. Res.-Atmos., 106, 18251–18274, https://doi.org/10.1029/2000JD900749, 2001.
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties and application to moderate resolution imaging Spectroradiometer aerosol retrieval over land, J. Geophys. Res.-Atmos., 112, D13210, https://doi.org/10.1029/2006jd007815, 2007.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Li, J., Wong, M., Lee, K. H., Nichol, J., and Chan, P. W.: Review of dust storm detection algorithms for multispectral satellite sensors, Atmos. Res., 250, 105398, https://doi.org/10.1016/j.atmosres.2020.105398, 2021.
Li, Y.: Operational application of Fengyun satellite in dust weather monitoring, Satell. Appl., 11, 24–28, https://doi.org/10.3969/j.issn.1674-9030.2018.11.008, 2018.
Liu, C., Shen, X., and Gao, W.: Intercomparison of CALIOP, MODIS, and AERONET aerosol optical depth over China during the past decade, Int. J. Remote Sens., 39, 7251–7275, https://doi.org/10.1080/01431161.2018.1466070, 2018.
Liu, D., Wang, Z., Liu, Z., Winker, D., and Trepte, C.: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements, J. Geophys. Res.-Atmos., 113, D16214, https://doi.org/10.1029/2007JD009776, 2008.
Lu, J., Xu, Z., and Qi, Y.: Global Dust Remote Sensing with the FengYun-3 Satellite, Desert Res., 35, 690–698, 2015.
Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, T. D., Kubilay, N., Prospero, J. M., and Tegen, I.: Atmospheric global dust cycle and iron inputs to the ocean, Global Biogeochem. Cy., 19, GB4025, https://doi.org/10.1029/2004GB002402, 2005.
Mahowald, N.: Aerosol indirect effect on biogeochemical cycles and climate, Science, 334, 794–796, https://doi.org/10.1126/science.1207374, 2011.
Michailidis, K., Koukouli, M.-E., Balis, D., Veefkind, J. P., de Graaf, M., Mona, L., Papagianopoulos, N., Pappalardo, G., Tsikoudi, I., Amiridis, V., Marinou, E., Gialitaki, A., Mamouri, R.-E., Nisantzi, A., Bortoli, D., João Costa, M., Salgueiro, V., Papayannis, A., Mylonaki, M., Alados-Arboledas, L., Romano, S., Perrone, M. R., and Baars, H.: Validation of the TROPOMI/S5P aerosol layer height using EARLINET lidars, Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, 2023.
Middleton, N. J.: Desert dust hazards: A global review, Aeolian. Res., 24, 53–63, https://doi.org/10.1016/j.aeolia.2016.12.001, 2017.
Mu, F. and Fiedler, S.: How much do atmospheric depressions and Mongolian cyclones contribute to spring dust activities in East Asia? npj Clim. Atmos. Sci., 8, 51, https://doi.org/10.1038/s41612-025-00929-w, 2025.
Mu, F., Luiz, E. W., and Fiedler, S.: On the dynamics and air-quality impact of the exceptional East Asian dust outbreak in mid-March 2021, Atmos. Res., 292, 106846, https://doi.org/10.1016/j.atmosres.2023.106846, 2023.
Penning de Vries, M. and Wagner, T.: Modelled and measured effects of clouds on UV Aerosol Indices on a local, regional, and global scale, Atmos. Chem. Phys., 11, 12715–12735, https://doi.org/10.5194/acp-11-12715-2011, 2011.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40, 2-1–2-31, https://doi.org/10.1029/2000RG000095, 2002.
Rao, Y., Li, H., Chen, M., Fu, Q., Zhuang, G., and Huang, K.: Characterization of airborne microbial aerosols during a long-range transported dust event in Eastern China: bacterial community, influencing factors, and potential health effects, Aerosol Air Qual. Res., 20, 2834–2845, https://doi.org/10.4209/aaqr.2020.01.0030, 2020.
Rezaei, M., Farajzadeh, M., Mielonen, T., and Ghavidel, Y.: Analysis of spatio-temporal dust aerosol frequency over Iran based on satellite data, Atmos. Pollut. Res., 10, 508–519, https://doi.org/10.1016/j.apr.2018.10.002, 2019.
Richon, C., Dutay, J.-C., Dulac, F., Wang, R., and Balkanski, Y.: Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea, Biogeosciences, 15, 2499–2524, https://doi.org/10.5194/bg-15-2499-2018, 2018.
Shao, Y. and Dong, C. H.: A review on East Asian dust storm climate, modelling and monitoring, Global Planet. Change, 52, 1–22, https://doi.org/10.1016/j.gloplacha.2006.02.011, 2006.
Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: An emerging core theme in Earth system science, Aeolian. Res., 2, 181–204, https://doi.org/10.1016/j.aeolia.2011.02.001, 2011.
She, L., Xue, Y., Yang, X., Guang, J., Li, Y., Che, Y., and Fan, C.: Dust detection and intensity estimation using Himawari-8/AHI observation, Remote Sens., 10, 490, https://doi.org/10.3390/rs10040490, 2018.
Song, L., Bi, X., Zhang, Z., Li, L., Dai, Q., Zhang, W., Hu, L., Wang, X., Liang, D., and Feng, Y.: Impact of sand and dust storms on the atmospheric environment and its source in Tianjin-China, Sci. Total Environ., 825, 153980, https://doi.org/10.1016/j.scitotenv.2022.153980, 2022.
Sun, X., Fan, X., Zhang, T., Wang, Y., Lyu, D., and Zheng, M.: Tempo-Spatial Distributions and Transport Characteristics of Two Dust Events over Northern China in March 2021, Remote Sens., 14, 5967, https://doi.org/10.3390/rs10040490, 2022.
Torres, O., Bhartia, P. K., Herman, J. R., Sinyuk, A., Ginoux, P., and Holben, B.: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements, J. Atmos. Sci., 59, 398–413, https://doi.org/10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2, 2002.
Torres, O., Jethva, H., Ahn, C., Jaross, G., and Loyola, D. G.: TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020, Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, 2020.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., Van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 120, 70–83, https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Wang, D., Zhang, F., Yang, S., Xia, N., and Ariken, M.: Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS), Environ. Monit. Assess., 192, 383, https://doi.org/10.1007/s10661-020-08299-x, 2020.
Wang, M., Wei, W., Ruan, Z., He, Q., and Ge, R.: Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert, Environ. Monit. Assess., 185, 4819–4834, https://doi.org/10.1007/s10661-012-2906-4, 2013.
Wang, N., Chen, J., Zhang, Y., Xu, Y., and Yu, W.: The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021), Remote Sens., 15, 410, https://doi.org/10.3390/rs15020410, 2023.
Wei, J., Li, Z., Sun, L., Peng, Y., Zhang, Z., Li, Z., Su, T., Feng, L., Cai, Z., and Wu, H.: Evaluation and uncertainty estimate of next-generation geostationary meteorological Himawari-8/AHI aerosol products, Sci. Total Environ., 692, 879–891, https://doi.org/10.1016/j.atmosenv.2019.01.016, 2019a.
Wei, J., Li, Z., Sun, L., Peng, Y., and Wang, L.: Improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products, Atmos. Environ., 202, 315–327, https://doi.org/10.1016/j.scitotenv.2019.07.326, 2019b.
Wei, X., Chang, N. B., Bai, K., and Gao, W.: Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives, Crit. Rev. Env. Sci. Tec., 50, 1640–1725, https://doi.org/10.1080/10643389.2019.1665944, 2020.
Winker, D. M., Hunt, W. H., and McGill, M. J.: Initial performance assessment of CALIOP, Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135, 2007.
Wu, S. and Ma, X.: Analysis of dust vertical and horizontal distribution during dust events in northwest China based on FY-4A, MODIS and CALIPSO satellite data, Acta Sci. Circumstantiae, 40, 2892–2901, https://doi.org/10.13671/j.hjkxxb.2020.0093, 2020.
Xian, D., Zhang, P., Gao, L., Sun, R., Zhang, H., and Jia, X.: Fengyun meteorological satellite products for earth system science applications, Adv. Atmos. Sci., 38, 1267–1284, https://doi.org/10.1007/s00376-021-0425-3, 2021.
Yan, X., Luo, N., Liang, C., Zang, Z., Zhao, W., and Shi, W.: Simplified and Fast Atmospheric Radiative Transfer model for satellite-based aerosol optical depth retrieval, Atmos. Environ., 224, 117362, https://doi.org/10.1016/j.atmosenv.2020.117362, 2020.
Yang, L., She, L., Che, Y., He, X., Yang, C., and Feng, Z.: Analysis of Dust Detection Algorithms Based on FY-4A Satellite Data, Appl. Sci., 13, 1365, https://doi.org/10.3390/app13031365, 2023.
Yang, Y. Q., Hou, Q., Zhou, C. H., Liu, H. L., Wang, Y. Q., and Niu, T.: Sand/dust storm processes in Northeast Asia and associated large-scale circulations, Atmos. Chem. Phys., 8, 25–33, https://doi.org/10.5194/acp-8-25-2008, 2008.
Ye, Q., Zheng, X. S., and Zhao, S. Y.: Monitoring and transport path analysis of an intense dust weather process in 2021, National Remote Sensing Bulletin, 27, 1821–1833, https://doi.org/10.11834/jrs.20232153, 2023.
Yoshida, M., Kikuchi, M., Nagao, T.M., Murakami, H., Nomaki, T., and Higurashi, A.: Common retrieval of aerosol properties for imaging satellite sensors, J. Meteorol. Soc. Jpn., 96B, 193–209, https://doi.org/10.2151/jmsj.2018-039, 2018.
Zhang, P., Lu, N., Hu, X., and Dong, C.: Identification and physical retrieval of dust storm using three MODIS thermal IR channels, Global Planet. Change, 52, 197–206, https://doi.org/10.1016/j.gloplacha.2006.02.014, 2006.
Zhang, P., Wang, C., Chen, L., Bai, W., Qi, C., and Qi, J.: Current Status of Satellite-Based Dust Aerosol Remote Sensing and Some Issues to Be Concerned, Meteor. Mon., 44, 725–736, https://doi.org/10.7519/j.issn.1000-0526.2018.06.001, 2018.
Zhang, P., Zhu, L., Tang, S., Gao, L., Chen, L., Zheng, W., Han, X., Chen, J., and Shao, J.: General comparison of FY-4A/AGRI with other GEO/LEO instruments and its potential and challenges in non-meteorological applications, Front. Earth Sci., 6, 224, https://doi.org/10.3389/feart.2018.00224, 2019a.
Zhang, W., Xu, H., and Zhang, L.: Assessment of Himawari-8 AHI aerosol optical depth over land, Remote Sens., 11, 1108, https://doi.org/10.3390/rs11091108, 2019b.
Zhao, Y., Xin, Z., and Ding, G.: Spatiotemporal variation in the occurrence of sand-dust events and its influencing factors in the Beijing-Tianjin Sand Source Region, China, 1982–2013, Reg. Environ. Change, 18, 2433–2444, https://doi.org/10.1007/s10113-018-1365-z, 2018.
Zhuang, G., Guo, J., Yuan, H., and Zhao, C.: The compositions, sources, and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment, Chinese Sci. Bull., 46, 895–900, https://doi.org/10.1007/BF02900460, 2001,
Zweers, D. S.: TROPOMI ATBD of the UV Aerosol Index, https://sentinels.copernicus.eu/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-UV-Aerosol-Index.pdf (last access: 2 July 2025), 2022.
Short summary
Satellite remote sensing helps monitor dust storms. Our study compared five satellite products that use ground-based PM10 data. Most products agreed on the daily dust distribution, with absorbing aerosol index (AAI) performing best under cloud cover. Overall, the Sentinel-5P AAI has the highest probability of correct detection (POCD) in dust events but is unstable and has a high probability of false detection (POFD). The FY4A/B infrared difference dust index (IDDI) has the lowest POCD, but it is relatively stable, and its POFD is low.
Satellite remote sensing helps monitor dust storms. Our study compared five satellite products...