Articles | Volume 18, issue 18
https://doi.org/10.5194/amt-18-4885-2025
https://doi.org/10.5194/amt-18-4885-2025
Research article
 | 
29 Sep 2025
Research article |  | 29 Sep 2025

Performance and evaluation of remote sensing satellites for monitoring dust weather in East Asia

Yuanyuan Zhang, Ning Wang, and Shuanggen Jin

Cited articles

Ahn, C., Torres, O., Jethva, H., Tiruchirapalli, R., and Huang, L. K.: Evaluation of aerosol properties observed by DSCOVR/EPIC instrument from the Earth-Sun Lagrange 1 Orbit, J. Geophys. Res.-Atmos., 126, e2020JD033651, https://doi.org/10.1029/2020JD033651,2021. 
Akhlaq, M., Sheltami. T. R., and Mouftah, H. T.: A review of techniques and technologies for sand and dust storm detection, Rev. Environ. Sci. Bio, 11, 305–322, https://doi.org/10.1007/s11157-012-9282-y, 2012. 
Apituley, A., Pedergnana, M., Sneep, M., Veefkind, J. P., Loyola, D., and Zweers, D. S.: Sentinel-5 precursor/TROPOMI level 2 product user manual UV aerosol index, https://sentinels.copernicus.eu/documents/247904/2474726/ Sentinel-5P-Level-2-Product-User-Manual-Aerosol-Index-product (last access: 2 July 2025), 2022. 
Bao, T., Xi, G., Hao, Y., Chang, I. S., Wu, J., Xue, Z., Jin, E., Zhang, W., and Bao, Y.: The Transport Path and Vertical Structure of Dust Storms in East Asia and the Impacts on Cities in Northern China, Remote Sens., 15, 3183, https://doi.org/10.3390/rs15123183, 2023. 
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An introduction to Himawari-8/9 – Japan's new-generation geostationary meteorological satellites, J. Meteorol. Soc. Jpn. Ser. II, 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. 
Download
Short summary
Satellite remote sensing helps monitor dust storms. Our study compared five satellite products that use ground-based PM10 data. Most products agreed on the daily dust distribution, with absorbing aerosol index (AAI) performing best under cloud cover. Overall, the Sentinel-5P AAI has the highest probability of correct detection (POCD) in dust events but is unstable and has a high probability of false detection (POFD). The FY4A/B infrared difference dust index (IDDI) has the lowest POCD, but it is relatively stable, and its POFD is low.
Share